
Towards Robust Constraint Satisfaction in Hybrid Hierarchical Planning*

Tobias Schwartz, Michael Sioutis, Diedrich Wolter

University of Bamberg
An der Weberei 5

Bamberg
{tobias.schwartz, michail.sioutis, diedrich.wolter}@uni-bamberg.de

Abstract

Hybrid planning is essential for real world applications, as it
allows for reasoning with different forms of abstract knowl-
edge, such as time, space or resources. This unavoidably leads
to a combinatorial explosion of the search space that has pre-
viously been tackled using a hierarchical task network (HTN)
planning approach. Existing HTN planners mostly focus on
finding a solution as fast as possible, with only recent work
considering length-optimal solutions. In real world scenarios,
it can easily happen that the environment changes before a
plan is fully executed. We are motivated to conduct planning
in such a way that the solution has the best chance of with-
standing such changes in the environment. We call this ability
the robustness of a solution. Defining robustness, however, is
an inherently difficult challenge, as many different forms and
notions exist. In this paper, we start the discussion by outlin-
ing a possible notion of robustness recently introduced in the
light of Qualitative Spatial Reasoning (QSR) within the scope
of hybrid hierarchical planning.

Introduction

We are interested in the question of how to do robust plan-
ning in the face of a dynamic execution environment. Exist-
ing planners are able to quickly derive a plan given a valid
domain and problem file. In the real world, however, we
deal with a high degree of uncertainty. Some events may
take longer than anticipated or other (dependent) objects in
the scene may have moved and thus are not available on the
same conditions as during the initial planning phase.

Traditionally, classical planning is concerned with finding
a sequence of actions that lead to a desired goal state (Ghal-
lab, Nau, and Traverso 2016). Actions for this matter are
defined in a specific domain file, stating at least their precon-
ditions and effects. Intuitively, an action a is only applicable
in a state s if all its preconditions are satisfied. However, in
practical applications it is usually not enough to only state
static preconditions and effects and indirectly impose an or-
dering constraint on the possible actions. Other aspects, such
as a sense of time, the spatial characteristic of the scenario,

*We would like to thank the anonymous reviewers for their in-
sightful feedback. This research is partially supported by BMBF
AI lab dependable intelligent systems.

physical restrictions in movements or resource limitations
often have to be considered.

In order to reason about all those different classes of
knowledge, the notion of meta-CSP has been introduced
(Mansouri and Pecora 2016). It formulates an abstract high-
level Constraint Satisfaction Problem (CSP) which is solved
using a meta-reasoner combining dedicated reasoners for
each of the different types of knowledge. All different view-
points (e.g., spatial, temporal, or resource) can then be mod-
eled within one reasoning framework by defining a con-
straint in the meta-CSP. One challenge in such a meta-CSP is
the combinatorial explosion of the search space. To still use
this approach in planning, a hierarchical planning approach
has been considered to systematically reduce the scope and
computational complexity (Stock et al. 2015).

Hierarchical Task Network (HTN) planning differs from
classical planning in that it distinguishes between primitive
and compound (or abstract) tasks. Instead of defining a spe-
cific goal state and let the planner find applicable actions
leading to a plan, in HTN planning a (series of) compound
task(s) is given and then decomposed into executable prim-
itive actions. The planner here tries to find an applicable
decomposition. Many extensions and varying realizations
within the hierarchical planning framework have been con-
sidered (cf. Bercher, Alford, and Höller (2019)).

Like Stock et al. (2015), we are motivated to apply ab-
stract reasoning in the context of HTN planning. Stock et al.
(2015) transform the HTN planning problem into a CSP
by encoding causal links of the HTN problem as so-called
meta-constraints into the aforementioned meta-CSP. Note
that this is similar to the combination of HTN planning with
Partial Order Causal Link (POCL) planning (Schattenberg
2009; Bercher et al. 2016), which builds into many current
hierarchical planners (Bercher 2021).

The meta-CSP formulation allows for abstract reasoning
not only within the task network, but for example also about
space, time and resource constraints. Reasoning about ab-
stract spatial and temporal information is usually done us-
ing Qualitative Constraint Networks (QCNs) (Ligozat 2013;
Dylla et al. 2017). In this context, Sioutis, Long, and Jan-
hunen (2020) recently studied a notion of robustness, which
concerns the perturbation tolerance of QCN solutions, i.e.,
their likelihood to resist a change in the environment.

Proceedings of the 4th ICAPS Workshop on Hierarchical Planning (HPlan 2021)

76



s1start s2 s3

s4 s5

Figure 1: A train network with five stations and multiple
paths leading from the start s1 to the destination s3

Robustness itself certainly is not a new concept, and can
probably be traced back even to the first algorithms for prob-
lem solving, as with different methods to obtain a solution
to a given problem, there was also the need to compare
those solutions on a (usually robustness-related) basis (see
for example Ginsberg, Parkes, and Roy (1998); Verfaillie
and Jussien (2005)). Still, the work by Sioutis, Long, and
Janhunen (2020) was the first time robustness as a measure
was considered in QCNs. Likewise, to the best of our knowl-
edge, the same holds for constrained reasoning in the con-
text of hybrid hierarchical planning, where no measures of
robustness have been established so far.

This paper contributes by pointing out the challenge of
defining robustness in the scope of hierarchical planning,
starting a discussion towards more robust solutions in HTN
planning. We demonstrate our motivation and its usefulness
in the context of a train routing problem. Following the work
by Mansouri and Pecora (2016) and Stock et al. (2015) on
modelling HTN planning in a meta-CSP, we establish sim-
ilarities to QCNs and indicate how the notion of robustness
from Sioutis, Long, and Janhunen (2020) may be applied.
This may be seen as a first starting point for further work on
robustness in hierarchical planning.

Robustness

Let us consider the simple train network depicted in Fig. 1,
which, for the sake of our example, encodes the following
planning task: Given n trains t1, . . . , tn with the goal to
drive from station s1 (start) to s3 (destination). Driving a
train from one station to another is a complex task on its
own, where multiple signals have to be adhered, speed has
to be adjusted accordingly, the tracks have to be monitored,
etc. (see Cardellini et al. (2021) for a recent formulation of
a similar problem in PDDL+). For the sake of the example,
we are for now abstracting from the details of said driving
process and only focus on the high-level decisions of which
train has to drive to which station at what time. We are es-
sentially reducing the problem such that given n trains in a
specified order, we try to find a viable route for each train
trough the network from the start to the destination. As ad-
ditional constraint, trains may only traverse in the direction
indicated by the arrow, i.e. reversing is not permitted.

Assuming a constant driving time between stations and
enough distance between incoming trains, the fastest and
thus likely preferred choice would be to use the direct path
via only station s2 for all trains. The problem with this route
is that once started at s1, there is no turning point and no

alternative route to switch to. If there occurs any form of
delay on a preceding train on this route, this unavoidably af-
fects all other trains. Likewise, if a part of the track between
s2 and s3 has to close temporarily, e.g., because of an animal
accident, no alternative path exists.

Uncertainty in the plan execution is the reason why cur-
rent work in railway planning increasingly focuses on ro-
bustness in the quality of solutions to a given planning prob-
lem, such as the one outlined above. Here, a plan may be
considered robust if it is able to withstand such unexpected
changes in the environment. Accordingly, robustness can be
defined as the ability of a system to resist change (Verfail-
lie and Jussien 2005; Lusby, Larsen, and Bull 2018). Note,
however, that based on the context also other notions of ro-
bustness exist. One can further differentiate between flexi-
ble and robust solutions to a problem (Verfaillie and Jussien
2005; Muise 2014). A flexible solution is anything that can
quickly generate a new solution in case of change, whereas
a robust solution has every chance to resist all possible
changes given by a model. Hereby, it is not only important
how possible changes are modeled (qualitative or quantita-
tive, probabilistic or not), but also when those changes are
available to a planner (before or during plan execution). De-
pending on those characteristics, different notions of robust-
ness may be applicable.

For example, reacting dynamically to a sudden change in
the environment, such as a technical disturbance that pre-
vents a train from reaching its next station, requires the use
of some form of execution monitoring (Fritz 2009; Muise
2014). Thereby, it is actively observed whether the executed
plan remains valid, given what is known in the current state.
Muise (2014) defines a plan in classical planning valid, iff
the plan is executable in the initial state I and results in
the goal state G. In contrast to such a sequential plan, the
least-commitment approach followed in partial-order plan-
ning promises more flexibility during execution, as some or-
dering choices can be delayed until run-time. A partial-order
plan (POP) is valid iff every linearization achieves the goal
from the initial state, clearly a strong requirement if we are
only interested in finding a possible way to achieve the goal.
More practically, a POP is called viable iff there exists a lin-
earization that achieves the goal, which may be efficiently
found by exploiting state relevance. Robustness may then
be achieved by actively monitoring the execution of the plan
and always selecting the most relevant partial plan fragment
for achieving the goal.

Similarly, in the context of hierarchical planning, Patra
et al. (2020) apply a UCT-like Monte-Carlo tree search pro-
cedure called UPOM, an online planner for the Refinement
Acting Engine (RAE) (Ghallab, Nau, and Traverso 2016),
to guide the selection of a method instance in case multiple
ones for a task exist. The RAE can not only accomplish tasks
but, like execution monitoring, also react to external events.

While the outlined planning approaches can consider
changing environments and to an end possess the capabil-
ity to include robustness, they may only be able to really
include one notion, e.g., probabilities or qualitative infor-
mation might not be considered. Also, they do not directly
incorporate robustness as a measure before plan execution.

Proceedings of the 4th ICAPS Workshop on Hierarchical Planning (HPlan 2021)

77



Case Study: Meta-CSPs
In what follows, we elaborate on a notion of robustness
in the context of hybrid hierarchical planning using meta-
CSPs, drawing on prior work by Sioutis, Long, and Jan-
hunen (2020) in the context of QCNs. We start by briefly
presenting some frameworks that are relevant to our discus-
sion and that we will be referring to throughout the paper.

Constraint Satisfaction Problems

We adopt the standard notation of a CSP from Russell and
Norvig (2020). A CSP is a tuple (X,D,C) where

• X is a set of variables {x1, . . . , xn}, where each variable
xi ∈ X corresponds to exactly one domain Di ∈ D,

• and C is a set of constraints that restrict possible value
assignments to variables.

An assignment that does not violate any constraints is
called a consistent assignment. Solving a CSP now is the
task of finding a consistent, complete assignment for all vari-
ables. A CSP is often visualized using a constraint graph
G = (V,E), where the vertices V represent variables and
the edges E define constraints between any two variables.

Qualitative Constraint Networks

Reasoning on infinite domains, such as space and time,
is typically done using Qualitative Constraint Networks
(QCNs) (Ligozat 2013; Dylla et al. 2017). Similar to a con-
straint graph for a CSP, a QCN is a network where the ver-
tices represent spatial or temporal entities and the edges are
labeled with qualitative spatial or temporal relations, based
on a finite set of jointly exhaustive and pairwise disjoint re-
lations, called the set of base relations B.

Hybrid Planning

Autonomous systems, such as robots, typically operate in
dynamic environments. Planning in such an environment is
particularly difficult as many different forms of knowledge,
such as temporal, causal or spatial information and con-
straints, have to be considered. Motivated by those needs of
real world applications, hybrid planning methods have been
studied. Hybrid planning in this context describes a classi-
cal planner that instead of focusing on one particular type
of constraint can reason with multiple classes of knowledge.
Note that the notion of hybrid planning has also been used
in the context of combining hierarchical with state based
Partial Order Causal Link (POCL) planning (Schattenberg
2009; Bercher et al. 2016).

For hybrid reasoning, Mansouri and Pecora (2016) have
proposed the use of a so-called meta-CSP. Here, fluents are
used to represent causal, temporal, spatial or resource se-
mantics. A fluent may be used to represent an action (e.g.
“drive”) or display the current situation (“a train is at the
station”). Given a set of fluents F and a set of constraints C
among the fluents in F , we can define a constraint network
as the pair (F , C). Note that this is similar to the nota-
tion used for a CSP, with fluents being the variables of a
heterogeneous set of domains. Now, we can cast the prob-
lem of finding a feasible plan as a meta-CSP, i.e. a high-
level CSP that captures the heterogenous information of the

overall problem, and is defined as a collection of meta-
constraints. A meta-constraint is a triple (M,Ξ,∆), where
M = (F , C) is a constraint network, Ξ is a set of meta-
variables {ξ1, . . . , ξn}, each of which is a subnetwork of M ,
i.e. ξi = (Fi ⊆ F , Ci ⊆ C), and ∆ = {δ(ξ1), . . . , δ(ξn)}
is a set of domains, one for each meta-variable.

Encoding a classical planning problem as a CSP has al-
ready been studied in the literature (Barták, Salido, and
Rossi 2010). The intuition is that we can restrict the length
of a possible plan and then subsequently increase this limit
until a plan is found1. The planning problem can then be
modeled as a series of boolean satisfiability (SAT) problems,
where each SAT instance is the problem of finding a plan of
a given length. Those instances can be encoded as CSP.

Mansouri and Pecora (2016) represent actions as opera-
tors, defined as the pair (f, (F , C)), where f = (A, ·, ·, u, ·)
is a fluent indicating that action A is being executed, F de-
scribes the set of fluents including the set of precondition
fluents Fp and both negative effect fluents F

−
∈ Fe and

positive effect fluents F+ ∈ Fe; and, finally, C is a set of
causal (CC), temporal (TC), spatial (SC), and symbolic (BC)
constraints on F ∪ {f}. Consider following example based
on the train problem outlined in Fig. 1, using the notations
introduced by Stock (2016):

f = (!driveTo(?t1, ?s2), [0,∞], [0, 30], u(track1) = 1)

Fp = {f1 = (At(?t2, ?s1), ·, ·)}

F
−
= {f1}

F+ = {f2 = (At(?t3, ?s3), ·, ·)}

CC = {f1 pre f, f closes f1, f opens f2, f planned f}

BC = {S
(f)
1 = S

(f1)
1 , S

(f)
1 = S

(f2)
1 , S

(f)
2 = S

(f2)
2 }

TC = {I(f) oi I(f1), I(f) fi I(f2)}

A certain task driveTo requests a train t1 to drive from
its current location (s1) to the station s2 and finish this task
no later than at time 30, i.e. arrive within 30 minutes. Ad-
ditionally, driving here requires a resource of track1. Also,
we model a set of causal and temporal constraints between
the fluents and define symbolic constraints stating for exam-
ple that the symbolic variables ?t1, ?t2, and ?t3 represent the
same train (i.e. t1). All constraints are added to and consid-
ered within the general constraint network of the meta-CSP
and, thus, allow for joined reasoning over all available in-
formation. A plan is then only feasible iff the constraint net-
work is consistent regarding all sources of input, e.g. it is
temporally, symbolically, causally and resource consistent.
Sophisticated reasoners for each domain may be used.

While this framework allows for potentially straightfor-
ward addition of all kinds of knowledge, this comes at a high
computational cost. An intuitive solution is thus to employ
some heuristics. For example, Stock et al. (2015) propose a
number of variable ordering heuristics to potentially boost
efficiency in the CSP search.

1As Barták, Salido, and Rossi (2010) we here assume that a
plan always exists.

Proceedings of the 4th ICAPS Workshop on Hierarchical Planning (HPlan 2021)

78



Hierarchical Hybrid Planning with Meta-CSPs

Hierarchical planning extends classical planning by intro-
ducing a task hierarchy. Instead of only using the notion of
applicable actions, it essentially differentiates between prim-
itive and compound tasks. Primitive tasks are hereby compa-
rable to the normal actions in classical planning. Compound
tasks describe a more abstract notion of a set of actions. This
grouping can impose additional restrictions that might not be
easily achievable using only preconditions and effects of ac-
tions. For example, an imposed ordering constraint can be
easily encoded in a compound task and drastically improve
efficiency of the planner. In fact, ordering tasks according
to a partial order can be seen as the motivation behind HTN
planning, the most influential subarea of hierarchical plan-
ning (Bercher, Alford, and Höller 2019).

In what follows, we briefly recall the definitions for HTN
planning as defined by Bercher, Alford, and Höller (2019).
The basis for HTN planning is the so called task network,
which essentially imposes a strict partial order on a finite
set of tasks T . The HTN planning domain D is defined as a
tuple (F,NP , NC , δ,M), where

• F is a finite set of facts,

• NP and NC are names of primitive and compound tasks,
respectively,

• δ : NP → 2F × 2F × 2F maps actions to primitive task
names,

• and M is a finite set of decomposition methods.

Finally, a HTN problem P is a tuple (D, sI , tnI), where
D is the planning domain, sI ∈ 2F is the initial state, and
tnI is an initial task network. A solution to this problem is
then a final task network tnS which is reachable from sI by
only applying methods and compound tasks. In the process,
all compound tasks need to be decomposed into primitive
actions, such that tnS does not contain compound tasks any-
more. The enforced task hierarchy directly restricts the set of
possible solutions to only those that can be obtained by task
decomposition (Bercher, Alford, and Höller 2019).

Following the formulation by Bercher et al. (2016), com-
pound tasks may have their own set of preconditions and
effects. These may be modeled using causal links as seen in
POCL planning. Informally, a causal link is used to impose
a direct ordering between two tasks by linking the effects of
the former to the preconditions of the latter task, such that
no other task may be allowed to be ordered between them.
In a hierarchical setting, we may pass down causal links to
all appropriate subtasks.

Given a meta-CSP as described above, it is now possi-
ble to encode the ordering relations imposed by the task
network as causal constraints into meta-constraints. Meta-
variables can then include all unplanned tasks whose prede-
cessor tasks, indicated by the ordering constraint, have al-
ready been planned (Stock et al. 2015). Finding applicable
tasks, i.e., the planning process, is then modelled as a CSP
search, such as backtracking search.

Robustness in Meta-CSPs
Following the aforementioned definition of robustness, in
the context of HTN planning, we are interested in a configu-
ration that given one ore more tasks, has the ability to retain
its feasibility more than any other in the case where some of
the facts in the world have changed. In other words, we are
interested in performing all tasks using a plan that has higher
chance than any other to remain viable after changes in the
environment occur. We call such a plan a robust plan, a plan
with the maximum ability of resisting and avoiding infea-
sibility. Therefore, a robust plan can be seen as a proactive
measure that limits as much as possible the need for succes-
sive repairs and replanning, and hence can play an important
role in environments that are prone to perturbation and un-
expected change, such as real-life configurations.

To further detail how robustness and dynamic reasoning
can play a role in planning, let us reconsider the simple
train network from Fig. 1. For convenience let us define
all three possible routes from s1 to s3 as r1 = [s1, s2, s3],
r2 = [s1, s4, s2, s3], and r3 = [s1, s4, s5, s3]. We can ac-
complish the task of driving a train to a specific destina-
tion with hierarchical planning using an abstract task like
driveTo(?train, ?destination). In case there is
no direct connection, the task may be decomposed recur-
sively to build a path from start to finish.

As mentioned before, when converting the whole plan-
ning task into a meta-CSP, the ordering of the tasks is en-
coded via causal constraints, where only the configurations
representing the possible routes in the network are satisfiable
scenarios. Following Sioutis, Long, and Janhunen (2020),
we can calculate the similarity between any one particular
solution of the meta-CSP and all other satisfiable ones. A ro-
bust scenario is then one with maximum average similarity
to all other scenarios. Intuitively, a robust scenario on aver-
age shares the largest set of constraints with each other sat-
isfiable scenario. In contrast to execution monitoring (Fritz
2009; Muise 2014), such a notion of robustness can guide
the planning process actively and thus acts as a proactive
measure, whereas the former mostly describes a reactive
method. In this regard, the outlined proactive robustness for-
mulation may best be compared with the measure of rele-
vance guiding the search of Muise (2014).

So far, the focus in HTN planning has been mostly on
finding a solution as quickly as possible, and only recent
work considered length-optimal plans (Behnke, Höller, and
Biundo 2019). One promising direction in this regard is the
UPOM planner (Patra et al. 2020), where different utility
functions can be optimized. While currently only efficiency
is considered, it may also be possible to directly integrate a
measure of robustness.

While it is difficult to say with certainty which path any
current hierarchical planner would follow in the outlined
train routing example, it seems more likely that a majority
might choose the shortest option (i.e. route r1), not because
it is the length-optimal plan, but rather because its decom-
position depth is also smaller than any of the alternative
routes. Unless specified otherwise with some constraints,
subsequent trains all follow the same route. In terms of min-
imizing the travel time, this might be a preferred configu-

Proceedings of the 4th ICAPS Workshop on Hierarchical Planning (HPlan 2021)

79



ration. From a collision avoidance perspective, it might be
favorable to split traffic onto all available routes. And solv-
ing the problem conservatively, we might select only routes
via station s4, i.e. r2 or r3, since following a least commit-
ment strategy it might be possible to only commit to one
available task decomposition once the train actually reaches
s4. In case such online changes are not directly permitted, a
potential plan repair by restarting the planning process from
this configuration should yield similar results. It is difficult
to judge which option should be implemented in a real sce-
nario. The currently most likely behavior, however, in our
opinion is the least suitable in terms of robustness.

Conclusion and Future Directions

We motivated the need for robust solutions in hierarchical
planning using an example of a train routing problem. Ro-
bustness has not been studied in the context of hierarchical
planning before and finding a suitable definition yet alone
applying it in an actual planner poses a difficult challenge.
To this end, robustness might be best understood as a met-
ric that can be favored more or less, depending on the safety
restrictions imposed by the planning environment and the
likelihood that certain events may disrupt normal operation.
Here it can also be useful to consider predicted knowledge
from experts or machine learning systems. In our example
of a train network, we may get the information that one
track will be subject to buckling due to a heatwave (Nguyen,
Wang, and Wang 2012), an information we clearly want to
take into account when routing the trains.

As a starting point, we chose a previously proposed ap-
proach to hierarchical planning by Stock et al. (2015) based
on an abstract CSP representation, called meta-CSP (Man-
souri and Pecora 2016). Not only the task network is mod-
eled in this meta-CSP, but it also allows to incorporate many
other types of information, such as resource, temporal, and
spatial constraints. Reasoning in temporal and spatial do-
mains is usually done using QCNs (Ligozat 2013; Dylla
et al. 2017). In this context, Sioutis, Long, and Janhunen
(2020) recently studied a notion of robustness, which con-
cerns the perturbation tolerance of QCN solutions, i.e. their
likelihood to resist a change in the environment. Based on
similarities between the way knowledge is represented in
meta-CSPs and QCNs, we discussed the potential applica-
bility of a similar notion of robustness in the scope of hierar-
chical planning. This work poses as a first step towards more
robust solutions in the hybrid hierarchical planning frame-
work, and as such hopefully sparks a lively discussion on
how to best define, measure, and incorporate robustness in
existing applications.

References

Barták, R.; Salido, M. A.; and Rossi, F. 2010. Constraint
satisfaction techniques in planning and scheduling. J. Intell.
Manuf. 21: 5–15.

Behnke, G.; Höller, D.; and Biundo, S. 2019. Finding Op-
timal Solutions in HTN Planning - A SAT-based Approach.
In IJCAI.

Bercher, P. 2021. A Closer Look at Causal Links: Com-
plexity Results for Delete-Relaxation in Partial Order Causal
Link (POCL) Planning. In ICAPS.

Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning - One Abstract Idea, Many Concrete
Realizations. In IJCAI.

Bercher, P.; Höller, D.; Behnke, G.; and Biundo, S. 2016.
More than a Name? On Implications of Preconditions and
Effects of Compound HTN Planning Tasks. In ECAI.

Cardellini, M.; Maratea, M.; Vallati, M.; Boleto, G.; and
Oneto, L. 2021. In-Station Train Dispatching: A PDDL+
Planning Approach. In ICAPS, 450–458. AAAI Press.

Dylla, F.; Lee, J. H.; Mossakowski, T.; Schneider, T.; van
Delden, A.; van de Ven, J.; and Wolter, D. 2017. A Sur-
vey of Qualitative Spatial and Temporal Calculi: Algebraic
and Computational Properties. ACM Comput. Surv. 50: 7:1–
7:39.

Fritz, C. 2009. Monitoring the Generation and Execution of
Optimal Plans. Ph.D. thesis, University of Toronto.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.

Ginsberg, M. L.; Parkes, A. J.; and Roy, A. 1998. Super-
models and Robustness. In AAAI/IAAI.

Ligozat, G. 2013. Qualitative Spatial and Temporal Reason-
ing. ISTE Ltd and John Wiley & Sons, Inc.

Lusby, R. M.; Larsen, J.; and Bull, S. 2018. A survey on
robustness in railway planning. Eur. J. Oper. Res. 266: 1–
15.

Mansouri, M.; and Pecora, F. 2016. A robot sets a table: a
case for hybrid reasoning with different types of knowledge.
J. Exp. Theor. Artif. Intell. 28: 801–821.

Muise, C. 2014. Exploiting Relevance to Improve Ro-
bustness and Flexibility in Plan Generation and Execution.
Ph.D. thesis, University of Toronto.

Nguyen, M. N.; Wang, X.; and Wang, C.-H. 2012. A reliabil-
ity assessment of railway track buckling during an extreme
heatwave. Journal of Rail and Rapid Transit 226: 513–517.

Patra, S.; Mason, J.; Kumar, A.; Ghallab, M.; Traverso, P.;
and Nau, D. S. 2020. Integrating Acting, Planning, and
Learning in Hierarchical Operational Models. In ICAPS.

Russell, S. J.; and Norvig, P. 2020. Artificial Intelligence -
A Modern Approach, Fourth Edition. Pearson Education.

Schattenberg, B. 2009. Hybrid planning & scheduling.
Ph.D. thesis, University of Ulm, Germany.

Sioutis, M.; Long, Z.; and Janhunen, T. 2020. On Robust-
ness in Qualitative Constraint Networks. In IJCAI.

Stock, S. 2016. Hierarchische hybride Planung für mobile
Roboter. Ph.D. thesis, University of Osnabrück, Germany.

Stock, S.; Mansouri, M.; Pecora, F.; and Hertzberg, J. 2015.
Online task merging with a hierarchical hybrid task planner
for mobile service robots. In IROS.

Verfaillie, G.; and Jussien, N. 2005. Constraint Solving
in Uncertain and Dynamic Environments: A Survey. Con-
straints 10: 253–281.

Proceedings of the 4th ICAPS Workshop on Hierarchical Planning (HPlan 2021)

80


