
Domain Analysis: A Preprocessing Method that Reduces the Size of the Search
Tree in Hybrid Planning

Michael Staud

StaudSoft UG (haftungsbeschränkt), Ulm, Germany
michael.staud@staudsoft.com

Abstract

We introduce a new method that can reduce the size of the
search tree in hybrid planning. Hybrid planning fuses task
insertion HTN planning with POCL planning. As planning is
a computationally difficult problem, the size of the search tree
can grow exponentially to the size of the problem.

We create so-called plan templates in a preprocessing step of
the domain. They can be used to replace an abstract task in a
partial plan. This task then no longer needs to be decomposed.

We provide empirical evidence in favor of this approach and
show that the use of plan templates can drastically reduce the
size of the search tree in hybrid planners. We use a PANDA-
like planner as a testbed and publicly available planning do-
mains to verify our claims.

1 Introduction

Planning is an important branch of artificial intelligence and
is widely used in practice. We focus on planning algorithms
that create action sequences to achieve a given goal in a
deterministic and fully observable world. One approach is
planning algorithms that create a search tree to find a solu-
tion to a problem (Ghallab, Nau, and Traverso 2004). This
is used in both classical planning and Hierarchical Task
Network (HTN) planning. In the latter, the nodes of the
tree contain partial plans with plan steps. In classical (non-
hierarchical) planning, the nodes store states. Unfortunately,
HTN planning is not flexible enough to be used with our
approach. We therefore use Hybrid planning (Schattenberg
and Biundo 2006; Biundo and Schattenberg 2001), which
extends HTN planning with partial order causal link (POCL)
techniques. It allows the insertion of new plan steps during
the planning process (task insertion).

A hybrid planning domain contains primitive and abstract
tasks. Primitive tasks correspond to operators known from
classical planning. Abstract tasks represent complex courses
of actions. They must be decomposed into more concrete
tasks using decomposition methods. In this process, an in-
stance of an abstract task is replaced by a partial plan, which
was stored in the decomposition method. This process is re-
peated until there are only plan steps with primitive tasks.
Each decomposition creates a new choice point in the search
tree. This process may introduce new abstract tasks into the
partial plan that must be decomposed again. This in turn cre-
ates new choice points in the search tree.

Our method is a domain analysis technique that prepro-
cesses a planning domain D (see Section 2). The goal is
to speed up the planning process. We create new decom-
position methods. They decompose an abstract task into a
single (newly generated) primitive task. Our innovation is
that such a decomposition method does not introduce new
plan steps with abstract tasks. The planning algorithm itself
is not changed. Before the execution of the planning algo-
rithm, the new domain DS ⊇ D is created, which contains
the new methods and primitive tasks. After the planning al-
gorithm has found a solution PDs , the plan steps with the
newly added primitive tasks are removed from it. They are
replaced by partial plans PRi

(τ) (called replacement plans)
that were generated during the preprocessing step. We call
this the replacement process (see Section 4). After that, the
solution PDs contains only primitive tasks found in the orig-
inal domain D. The replacement process uses neither search
nor further planning. A plan template is defined as the com-
bination of a method, a primitive task and a replacement
plan.
Our contribution is an algorithm that generates replacement
plans and placeholder tasks in a preprocessing step, which
are then used during planning to reduce the size of the search
tree. After a plan is found, the placeholder tasks are replaced
by the replacement plans.

In the following section, we first introduce hybrid plan-
ning. In the next section, we show how to create a plan
template with hybrid planning. Then, we describe the post-
processing step that is performed after the planning process.
At this point, the replacement plans are inserted into the so-
lution. We then present our results, which show the effec-
tiveness of our approach.

2 Hybrid Planning

Hybrid planning combines the concepts of Hierarchical Task
Network (HTN) planning and Partial-Order Causal-Link
(POCL) planning (Bercher, Alford, and Höller 2019; Bi-
undo and Schattenberg 2001). In our paper, hybrid planning
is with task insertion (TIHTN = HTN planning with task
insertion). The following definitions are taken in part from
Bercher, Keen, and Biundo (2014). Let V be the set of all
variables and C be the set of all constants.

A hybrid planning domain is a tuple D = (Ta, Tp,M).
Ta is the set of abstract tasks, Tp is the set of primitive tasks,

Proceedings of the 4th ICAPS Workshop on Hierarchical Planning (HPlan 2021)

16

and M is the set of all decomposition methods. All sets are
finite.

Both primitive and abstract tasks are tuples t(τ) =
〈prect(τ), eff t(τ)〉 consisting of a precondition and an ef-
fect. Each task has parameters τ . The preconditions and ef-
fects are conjunctions of literals and unequal variable con-
straints over the task parameters τ = (τ1, . . . , τn), τ i ∈
C ∪ V, i ∈ [1 . . . n]. A literal is an atom or its negation.
An atom is a predicate applied to a tuple of terms. A task
is grounded if all its variables are bound to constants. A un-
equal constraint can be between two variables or between
a variable and a constant. The preconditions and effects of
an abstract task have the semantics of Definition 7 from
Bercher et al. (2016). If it is clear from the context, we will
omit the parameters of a task.

Partial plans are tuples P = (PS ,≺,VC ,CL) consisting
of plan steps PS that are uniquely labeled tasks l : t(τ).
The set ≺ contains ordering constraints of the form (l, l′) ∈
PS×PS that induce a partial order on the planning steps in
PS. The set VC contains the unequal variable constraints
and the set CL contains the causal links. The CSP in VC
must be solvable. A causal link l : t(τ) →φ(τ ′) l′ : t′(τ ′)
(shortened: l →φ l′) links a precondition literal φ(τ ′) of the
plan step l′ : t′(τ ′) to a unifiable effect of l : t(τ). If there is
another plan step t′′(τ ′′) in the plan that has an effect υ(τ ′′)
that is unifiable with ¬φ(τ ′), and if the ordering constraints
allow l′′ to be ordered between l and l′, we call this a causal
threat. A precondition without a causal link is called open.

A partial plan P may contain abstract tasks. These must
be decomposed during the planning process using decom-
position methods. A method m = 〈t(τm), Pm〉 is a tu-
ple that maps an abstract task t(τm) to a partial plan
Pm = (PSm,≺m,VCm,CLm) that ”implements” the task
(Bercher et al. 2016, Def. 7). For the following definition, we
need the function unique(Pm, τ) = P ∗

m, that replaces each
variable and label with a new name that does not appear in
any other partial plan. If a variable is used in the parameters
τ , it is not changed.

Definition 1 (Task Decomposition). Let l : ta(τ t) be a plan
step with an abstract task ta to be decomposed with m =
〈ta(τm), Pm〉. And let P ′

m = (PS ′

m,≺′

m,VC ′

m,CL′

m) =
unique(Pm, τm)[τm,1/τ t,1, . . . , τm,n/τ t,n] be the partial
plan to be inserted. The set ≺X= {(l1, l2) ∈ PS ×
PS ′

m|(l1, l) ∈≺} ∪ {(l1, l2) ∈ PS ′

m × PS |(l, l2) ∈≺} de-
fines the new additional ordering constraints. The set CLX

contains the new causal links. The function fE (P, φ) returns
a task from the partial plan P that has an effect that is unifi-
able with φ. And the function fP(P, φ) returns a set of tasks,
each of which has a precondition that is unifiable with φ. The
two functions always find a return value, since our domain
must follow Definition 7 from Bercher et al. (2016).

CLX =
⋃

l′→φl′′∈CL











fE (P ′

m, φ} →φ l′′ l′ = l
⋃

l∗∈fP(P ′

m,φ) l
′ →φ l∗ l′′ = l

l′ →φ l′′ else

The new partial plan has the form P ′ = (PS ′,≺′

,VC ′,CL′). Where PS ′ = (PS \{l})∪PS ′

m, ≺′=≺ ∪ ≺′

m

∪ ≺X , VC ′ = VC ∪VC ′

m and CL′ = CLX ∪CL′

m holds.

Task insertion is defined as the insertion of a new plan
step with a primitive task l : t(τ ′).

Definition 2 (Planning Process). A partial plan can be re-
fined by decomposing an abstract task, task insertion, adding
a variable constraint, adding an ordering constraint or adding
a causal link.

A hybrid planning problem is a combination of a do-
main D and an initial plan Pinit . Let L be the set of all
conjunctions of grounded literals and L+ be the set of all
conjunctions of positive grounded literals. As in standard
POCL planning, we encode the initial state Is ∈ L+ and
the goal description Gs ∈ L as two special primitive tasks
t0(τ) = 〈∅, Is〉, t∞(τ) = 〈Gs,∅〉 in the initial plan Pinit .

Definition 3 (Solution). A plan Psol is a solution if there
are no open preconditions, when all tasks are primitive and
grounded and when there are no causal threats (Bercher,
Keen, and Biundo 2014). This implies that all linearization
of Psol can be executed.

3 Plan Template Generation

In the preprocessing step, a plan template is created for
an abstract task ta(τa) ∈ Ta. This is done using a
modified hybrid planner. The template is a tuple PT =
〈PR(τ),mT (τ), pT (τ)〉 over the parameters τ (τ ⊇ τa).
We need to generate:
• a replacement plan PR(τ), which is a partial plan
• a primitive task pT (τ)
• and a method mT (τ) = 〈ta(τa), P

′〉 that allows the plan-
ner to select the primitive task. It holds P ′ = ({l′ :
pT (τ)}, ∅, ∅, ∅).

The creation process is then the following:
Task Selection: Select ta(τa) (see Section 3.2).
Problem Creation: The replacement plan PR(τ) is the so-
lution to the following hybrid planning problem in the orig-
inal domain D: The initial plan Pinit contains the abstract
task ta(τa) and the special tasks t0(τ0) and t∞(τ∞). The
initial state Is is equal to the preconditions of ta(τa) and
the goal description Gs is equal to the effects of ta(τa)
(if it has effects, otherwise the goal description is empty).
The plan steps are then l0 : t0, la : ta, l∞ : t∞. Thus,
Pinit = {{l0, la, k∞}, {(l0, la), (la, l∞)},∅,∅}. Note that
these tasks need not be grounded. The solution is also not
grounded. A replacement plan PR(τ) can and should con-
tain unbounded variables for maximum flexibility. Accord-
ing to our empirical tests, if the abstract task ta(τa) has ef-
fects, this improves the quality of the plan template.
Replacement Plan Creation: We use a modified hybrid
planner. The first modification of the planning process (see
Definition 2) is that we introduce a new (additional) refine-
ment type when we encounter an open precondition. Let
r ∈ prect(τ) be an open precondition of the plan step
l : t(τ). Then we add a new effect r to the task t0(τ0) and
create a causal link l0 →r l. Note that the parameters τ from
t that occur in r are added as new parameters to τ0.

The second change is that the planning problem is now an
optimization problem that attempts to minimize an objective
function fta , described in Section 3.1. A solution Psol must
satisfy the solution criteria from Definition 3 and it must be

Proceedings of the 4th ICAPS Workshop on Hierarchical Planning (HPlan 2021)

17

minimal with respect to fta . This is necessary to produce a
useful plan template (see Section 5).

The solution Psol = (PS sol ,≺sol ,VC sol ,CLsol) is then
the replacement plan PR(τ). The parameters τ contain all
variables from Psol .

Primitive Task Creation: From a solution Psol , a primi-
tive task pT (τ) = 〈precpT

(τ), eff ppT
(τ)〉 is generated. The

precondition precpT
(τ) of this task contains the effects of

the primitive task t0(τ) in Psol . The unequal variable con-
straints VC sol in Psol are also added as a precondition.
Thus, precpT

(τ) = eff t0
(τ) ∪ VC sol holds.

The effects eff pT
(τ) of the task consist of all effects that

would be in the goal state if we were to execute Psol . Thus,
we do not add effects that are undone during the execution
of the partial plan (since it is a solution, this is true in any
linearization). Thus, it holds:

eff T (τ) =
⋃

r∈eff p
T ′

(τ ′)

l′:pT ′∈PS sol















r if no other effect ¬r′

of a plan step l′′ exists

with (l′, l′′) ∈ ≺sol

∅ else

Unless all effects and variable constraints are added, it
would not be possible to replace the primitive task pT (τ)
with the replacement plan PR(τ) without using search (see
Section 4).

Method Creation: The decomposition method mT (τ) is
created according to its definition. The method mT (τ) and
the primitive task pT (τ) are added to the original planning
domain D.

3.1 Objective Function

The objective function evaluates a partial plan P . Let P =
(PS ,≺,VC ,CL) be the current partial plan at template gen-
eration. And let t0(τ) = 〈prect0(τ), eff t0

(τ)〉 ∈ PS be
the initial task. The abstract task for which the template is
generated is called ta(τ). We define the following auxiliary
functions:

• ch(ta(τ), a): Returns 1 if the literal’s predicate occurs as
an effect in any decomposition of ta(τ). Otherwise, it re-
turns 0.

• stct(A): Given a set of atoms A, this function checks
whether the state constraints according to Gerevini and
Schubert (1998) are violated. It returns ∞ if a violation is
found. Otherwise, it returns 0.

• P (a ∈ S(ta)): Probability that the predicate of a is avail-
able as a precondition for ta in a randomly selected prob-
lem in the domain D. This is approximated by solving
example domains. We count in all these solutions which
predicates occur in causal links. In doing so, we consider
only the links that go from a plan step that was not gen-
erated by a decomposition of ta(τ) to a plan step that
was generated by a decomposition of ta(τ). From these
counts, the probability of occurrence of each predicate is
calculated.

We tested two different objective functions fta(Popt , ta):
f1(P, ta) = |prect0(τ)|+ |PS |

fx
2 (P, ta) =

|PS |+
∑

a∈prect0
(τ)

+ch(ta(τ), a)x+

stct(prect0(τ))

Regarding fx
2 we used the two variants f1

2 and f
P (a∈S(ta))
2 .

Often there are multiple solutions where an objective func-
tion is minimal or near-minimal. If there are example prob-
lems, we evaluate the plan templates with them by solving
them. We then select the plan template that maximizes the
reduction of the search space. The others are discarded (see
Table 1, rover domain).

3.2 Selection of Abstract Tasks

To determine which abstract task is suitable for generat-
ing plan templates, we use the task decomposition graph
(Bercher, Keen, and Biundo 2014). For each task, we com-
pute the set of mandatory Mta and optional tasks Ota . The
mandatory tasks occur in every decomposition of a given ab-
stract task ta. The optional tasks occur in at least one decom-
position. Thus, the amount of mandatory tasks |Mta | relative
to the optional tasks gives us an indication of how much the
decompositions of an abstract task ta will differ from each
other. In our experiments, the higher the ratio |Mta |/|Ota |,
the more successful the generation of a plan template. Thus,
we select the abstract task with the highest ratio.

4 Replacement Process

The replacement process is a post-processing step performed
after the solution PDs = (PSDs ,≺Ds ,VCDs ,CLDs) has
been generated in Ds. The goal is then to generate a so-
lution PDs′ = (PSDs′ ,≺Ds′ ,VCDs′ ,CLDs′) that is valid
in the original domain D. For each plan step l : pT (τ t),
which uses a primitive task from a plan template PT (τ) =
〈PR(τ),mT (τ), pT (τ)〉, pT (τ) =

〈

precpT
(τ), eff pT

(τ)
〉

we perform the following steps:

Decomposition: The plan step l : pT (τ) is treated as
an abstract task and decomposed using the method m′ =
〈pT (τ),PR(τ)〉. Let P ′

R = (PS ′

R,≺
′

R,VC
′

R,CL
′

R) =
unique(PR, τ)[τ1/τ t,1, . . . , τn/τ t,n] (see Definition 1).

Relinking: After the decomposition, the plan steps l0, l∞ ∈
PS ′

R are removed and their causal links are relinked. Let
l0 →φ l′ be a casual link from l0. And let l′′ →φ l be a
causal link to l : pT . Then these two links are replaced by
l′′ →φ l′. Similarly, a causal link of the form l′ →φ l∞ is
treated. Let l →φ l′′ be a causal link with l : pT . Then these
two links are replaced again by l′ →φ l′′. Note that because
of the way pT is defined, relinking is always possible. The
new partial plan after the decomposition is then PDs′ .

Removing Causal Threats: We remove causal threats in-
troduced by the decomposition step. Let ¬φ be an effect of
l′ ∈ PSDs′ that threatens a causal link l′′ →φ l∗. Let kp(l)
be a function that returns 1 if l ∈ PS ′

R and 0 otherwise.

It cannot be kp(l
′) = kp(l

′′) = kp(l
∗) because both the

replacement plan PR and the original plan PDs were solu-
tions (and thus without causal threats). It is also not pos-
sible that kp(l

′′) 6= kp(l
∗) holds, because then the causal

link would have been created during the relinking step. And
since we have only connected pre-existing causal links to-
gether, there can therefore be no causal threat. It follows that

Proceedings of the 4th ICAPS Workshop on Hierarchical Planning (HPlan 2021)

18

satellite2 1o1s1m 2o1s2m 4o2s3m 3o2s2m

WO/W/I 66/17/3.88 11371/340/33.44 42140/29959/1.40 130791/1873/69.83

1o2s1m 2o1s1m 2o2s2m 3o1s3

WO/W/I 101/27/3.74 449/109/4.11 4472/119/37.57 > 300000/22312/> 12.44

3o1s1m 3o2s1m 3o2s3m 3o3s1

WO/W/I 5472/1209/4.52 15679/2773/5.64 > 300000/5483/54.71 29570/12945/2.28

3o3s2m 3o3s3m 3o1s2m

WO/W/I > 300000/2380/> 126.05 > 300000/986/> 304.25 136927/3368/40.65

woodworking 00 01 02 03

WO/W/I 4370/1738/2.51 67/67/1.00 79/79/1.00 374/224/1.67

04

WO/W/I 1930/1797/1.07

transport pfile01 pfile02 pfile03

WO/W/I 497/57/9.20 237244/63242/3.75 252274/127007/1.98

rover pfile1 pfile2 pfile3 pfile4

WO/W/I 2194/1006/2.18 130/3347/none 19603/8454/2.31 636/405/1.57

WD/WD2 4330/4786 612/86 21745/22290 1234/552

Table 1: Satellite Domain: Problems of the satellite domain solved without and with plan templates. It holds XoYsZm =
Xobs-Ysat-Zmod.hddl and WO/W/I = Solved without plan template / Solved with plan template / The improvement
factor.
Woodworking Domain: Problems of the woodworking domain. In this domain, an abstract task is on average decomposed into
two primitive tasks without plan template. Thus, there is not much room for improvement when the plan template is used.
Transport Domain: Problems of the transport domain.
Rover Domain: Problems of the rover domain solved without and with plan templates. The rover domain contains abstract tasks
without effects. However, due to the structure of the rover domain, a plan template could still be generated. We also added
measurements for 2 plan templates that were discarded because they were not as effective as the selected template. Note that
in the pfile02 example, the selected template performs very poorly and a discarded template reduces the number of search
nodes. It holds WD/WD2 = With Discarded Template / With Discarded Template 2.

domain satellite2 rover transport woodworking

States 182 31476 73 66

Generated 1 4 2 4

Used 1 1 2 1

Table 2: Number of search nodes needed to generate a
plan template. Note that adding multiple plan templates to
a domain can reduce performance because it increases the
branching factor during the planning process. In the trans-
port domain, we used 2 templates, which increases the num-
ber of states in the first example pfile01.

kp(l
′′) = kp(l

∗) and kp(l
′) 6= kp(l

′′).
If kp(l

′) = 0, then kp(l
′′) = kp(l

∗) = 1. Then we can add
(l′, l′′) or (l∗, l′) to the ordering constraints ≺Ds′ . This is al-
ways possible because ≺Ds cannot contain both (l′′, l′) and
(l′, l∗) after the decomposition step as defined by Definition
1. All ordering constraints (l1, l2) where kp(l1) 6= kp(l2)
holds were added during this step.

If kp(l
′) = 1, it follows that kp(l

′′) = kp(l
∗) = 0. If

adding (l′, l′′) or (l∗, l′) to the ordering constraints ≺Ds′ is
not possible, we must relink the causal link l′′ →φ l∗. We
know that it must hold ¬φ /∈ eff pT

(τ) because:

• all effects of a plan step in PR, except those removed by
another task, are added to eff pT

(τ).
• if ¬φ ∈ eff pT

(τ) then there would be no causal threat
because PDs is a solution.

It follows ¬φ /∈ eff pT
(τ) and according to Section 3 (Prim-

itive Task Creation) there must be at least one more task
l∗∗ ∈ PS ′

R with effect φ and (l′, l∗∗) ∈≺′

R. We then add
l∗∗ →φ l∗ and delete the old causal link.

Suppose the new link is again threatened by another
plan step l∗∗∗, kp(l

∗∗∗) = 1 with an effect ¬φ. Then the
link is rewired again. This is repeated until the link is no
longer threatened. And there cannot be a plan step l∗∗∗ with
kp(l

∗∗∗) = 0 that threatens the link, because in that case it
would also threaten the original link, which is a contradic-
tion because PDs is a solution.

Theorem 1. The replacement process does not introduce
new flaws into the plan. The resulting plan is a solution.

Proof Sketch: We will show that the plan satisfies the solu-
tion criteria after the replacement process:

• No Open Preconditions: In the replacement plan PR(τ)
all preconditions are linked. And all other links that are
broken during the relinking step are reconnected.

• No Causal Threats: All causal threats were repaired in the
last step of the replacement process.

• Grounded: Each plan step is grounded because all pa-
rameters of PT (τ) are constants. The parameters also do
not violate any variable constraints in P ′

R(τ). This is the
case because we have added all the variable constraints of
PR(τ) to the preconditions of the primitive task pT (τ).

�

Proceedings of the 4th ICAPS Workshop on Hierarchical Planning (HPlan 2021)

19

5 Results

We evaluated four sample domains (University Ulm 2019)

with plan templates generated with the f
P (a∈S(ta))
2 function

(see Table 1). In each test domain, the algorithm selects n
abstract tasks for which a plan template is generated accord-
ing to Section 3.2. The number n of plan templates is deter-
mined by the user. We then compared the size of the search
tree when using the original domain D and when using the
domain Dnew with the plan template. We counted the search
nodes in all our tests. These are shown in the tables.

We used a self-developed partial order planner with sup-
port for abstract tasks and TIHTN+POCL planning using
the hybrid heuristic h#F + hTC from Bercher, Keen, and
Biundo (2014). The heuristic works with grounded abstract
tasks, so we find a random grounding to apply this heuristic
to a lifted task. The planner is sound and complete. As a flaw
selection heuristic, we select the flaw that has the least num-
ber of distinct resolutions. This results in a low branching
factor.

The satellite2 domain showed the largest perfor-
mance gain. Here, the planner mostly (in 86% of the cases)
chose the template method during the planning process,
which reduced the number of states by a factor of up to
300. In the transport domain, only one plan template
was used. In the rover example, only one template was
also used. Since the rover example contains 9 different ab-
stract tasks, this reduced the usability of our plan template,
which only replaced one abstract task.

In all examples, we also tried to use more templates, but
this resulted in an increase in the number of search nodes.
Without task insertion the templates were not used by the
planner because in most of the cases the preconditions of
the primitive task pT could not be fulfilled.

We also tested the different evaluation functions from
Section 3.1. The f1 function did not provide any usable tem-
plates. Without evaluating the initial conditions added dur-
ing the planning process, the planning algorithm does not
know in which direction to optimize.

The functions f1
2 and f

P (a∈S(ta))
2 provided usable results.

But only f
P (a∈S(ta))
2 was successful in all sample domains

(see Table 2). The f1
2 function did not produce a usable

plan template in the transport domain. When we used

f
P (a∈S(ta))
2 , we did not use the same problems for the eval-

uation of the plan templates and performance measurements.

The performance gain is also supported by research about
plan merging. Since we solve a part of the plan indepen-
dently, the research results of Korf (1987) apply. He showed
that if we can solve n subgoals separately, this divides the
base and exponent of the complexity function by n. Thus,
theoretically, our approach can lead to an exponential reduc-
tion in the size of the search tree.

6 Related Work

Macros are also a technique to encapsulate sequences of op-
erators. Like plan templates, they have preconditions and ef-
fects like operators. This idea originated in the 1970s (Fikes
and Nilsson 1971). They are generated from plans in a pre-

processing step. These plans are solutions of example prob-
lems. In contrast to our approach, they do not use HTN do-
mains and therefore cannot use the additional information
they contain (abstract tasks, methods) (Chrpa, Vallati, and
McCluskey 2015).

7 Conclusions

We presented a new domain analysis method that can reduce
the size of the search tree. We showed that a drastic reduc-
tion in the size of the search tree is empirically possible. This
is even more effective when example problems are available
to guide the search when generating the plan templates. This
is because it improves the quality of the plan templates.

This method can be used wherever many problems need
to be solved in the same domain. It can quickly generate plan
templates. Further research is needed to determine which do-
main features make plan template generation successful.

References

Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on Hi-
erarchical Planning-One Abstract Idea, Many Concrete Re-
alizations. In IJCAI 2019, 6267–6275. IJCAI Organization.

Bercher, P.; Höller, D.; Behnke, G.; and Biundo, S. 2016.
More than a Name? On Implications of Preconditions and
Effects of Compound HTN Planning Tasks. In ECAI 2016,
225–233. IOS Press.

Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid Planning
Heuristics Based on Task Decomposition Graphs. In SoCS
2014, 35–43. AAAI Press.

Biundo, S.; and Schattenberg, B. 2001. From Abstract Crisis
to Concrete Relief – A Preliminary Report on Combining
State Abstraction and HTN Planning. In ECP 2001, 157–
168. Springer.

Chrpa, L.; Vallati, M.; and McCluskey, T. L. 2015. On the
Online Generation of Effective Macro-Operators. IJCAI 15,
1544–1550. AAAI Press.

Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. IJCAI 71, 608–620. Morgan Kaufmann.

Gerevini, A.; and Schubert, L. 1998. Inferring State Con-
straints for Domain-Independent Planning. AAAI 98/IAAI
98, 905–912. AAAI Press.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Elsevier.

Korf, R. E. 1987. Planning as Search: A Quantitative Ap-
proach. AI 87 33(1): 65–88.

Schattenberg, B.; and Biundo, S. 2006. A Unifying Frame-
work for Hybrid Planning and Scheduling. In KI 06, 361–
373. Springer.

University Ulm. 2019. PANDA Planning Domains
and Problems. Https://www.uni-ulm.de/en/in/ki/research/-
software/panda/, Accessed: 2020-10-01.

Proceedings of the 4th ICAPS Workshop on Hierarchical Planning (HPlan 2021)

20

