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Simona Ondrčková Charles University, Prague, Czech Republic
Sunandita Patra University of Maryland, College Park, Maryland, USA
Felix Richter Robert Bosch GmbH, Corporate Sector Research

and Advance Engineering, Stuttgart, Germany
Dominik Schreiber Karlsruhe Institute of Technology, Karlsruhe, Germany
Shirin Sohrabi IBM, Thomas J. Watson Research Center,

Yorktown Heights, NY USA
David Speck University of Freiburg, Germany
Alvaro Torralba Aalborg University, Denmark
Julia Wichlacz Saarland University, Saarbrücken, Germany
Zhanhao Xiao Sun Yat-sen University, Guangzhou, China

Organizing Committee

Pascal Bercher The Australian National University, Canberra, Australia
Jane Jean Kiam University of the Bundeswehr Munich, Germany
Zhanhao Xiao Sun Yat-Sen University, Guangzhou, China
Ron Alford The MITRE Corporation, McLean, Virginia, USA

ii



The motivation for using hierarchical planning formalisms is manifold. It ranges from an explicit
and predefined guidance of the plan generation process and the ability to represent complex problem
solving and behavior patterns to the option of having different abstraction layers when communicat-
ing with a human user or when planning cooperatively. This led to numerous hierarchical formalisms
and systems. Hierarchies induce fundamental differences from classical, non-hierarchical planning,
creating distinct computational properties and requiring separate algorithms for plan generation,
plan verification, plan repair, and practical applications. Many techniques required to tackle these
– or further – problems in hierarchical planning are still unexplored.

With this workshop, we bring together scientists working on many aspects of hierarchical planning
to exchange ideas and foster cooperation.

In 2021, the 4th edition of the workshop, we received an astonishing 14 submissions. As in all pre-
vious workshops, each paper received at least three reviews, and sometimes four when necessary.
Each reviewer had to review at most 2 submissions, which were assigned by interest and expertise.
Reviewers crafted over 32 thousand words of commentary, and average of 2,300 per paper, with a
quality comparable to reviews in major top-tier conferences. In the end, nine papers were uncon-
ditionally accepted. For the other five papers, authors used the reviews to significantly improve
their submission, and were accepted after a second round of reviewing.

Like in previous years, a range of topics is addressed in the papers of this workshop.

Two papers are concerned with planning under uncertainty. One of them investigates the com-
putational complexity for fully observable HTN problems with actions having non-deterministic
effects. The other describes an HTN planner for solving POMDPs by integrating Monte Carlo Tree
Search. Several other works are concerned with solving (hierarchical) planning problems as well.
One approach builds upon hybrid planning, a formalism fusing HTN planning with Partial Order
Causal Link (POCL) planning. It proposes a preprocessing plus postprocessing technique aimed at
reducing the search space by precomputing solutions to subproblems. Two further papers introduce
HTN planning systems – one is designed for Goal Task Network (GTN) problems, an extension of
HTN problems that allows for the specification of partially ordered goals, and one that is designed
for restarting at positions where execution errors occur in the context of integrated planning and
acting.

Multiple papers are concerned with or related to plan verification. One paper is concerned with
an algorithm based on grammar parsing for verifying that an action sequence is a solution to a
totally ordered HTN problem thus exploiting the total order for higher efficiency. Another paper
is concerned with HTN plan verification as well, but it proposes a novel way of doing so: It relies
on a compilation from such a verification problem into a standard HTN planning problem. Two
further papers are devoted to the case when plan verification fails, i.e., in case the provided plan
is not a solution to the given HTN planning problem. One of them proposes changing the plan by
removing the minimal number of actions to turn it into a solution, whereas the other changes the
model instead. The former paper proposes and evaluates a technique based on grammar parsing,
whereas the latter does not provide any technique but studies the computational complexity of the
underlying decision problem.

Several papers propose applications of hierarchical planning to concrete problems. The applica-
tions include multi-agent path finding, the multi-robot task allocation problem (via hierarchical
auctions), as well as provisioning a service agent for assistance in carrying out everyday tasks.
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As first offered in 2020, this year we again encouraged the submission of challenge papers aimed to
highlight important problems in the field of hierarchical planning. Of the two challenge papers ac-
cepted, one points out some major challenges in temporal HTN planning to increase its applicability
for real-world problems involving nested multi-vehicle routing problems. The other paper argues
that by introducing a metric to measure “robustness”, plans found using hierarchical planning are
more capable of coping with dynamic environments, which is often an issue in real-world problems.
We hope that highlighting these challenges will spark interesting discussions at the workshop and
lead to potential solutions in the future.

Just like in 2020, both the main conference as well as the workshop were done purely online,
executed via gather.town. Last year, it went exceptionally well: Both the invited talk and the
poster sessions were well attended with rich discussions, so we are looking forward to this year’s
virtual HPlan as well!

Due to the much higher number of accepted papers compared to last years (7, 7, and 6 in 2018–
2020, with 14 in 2021), we had to increase the workshop length from half-day (4 hours) to 3/4-day
(6 hours). All papers will be shortly announced with teaser talks of 5 to 10 minutes, and then
discussed in more depth in four poster sessions, each taking 45 minutes and hosting 3 or 4 posters,
depending on the session.

As in previous years, we also feature an invited talk, this year by Malik Ghallab, who introduces
his work on Hierarchical Online Reasoning for the Integration of Planning and Acting. On the next
pages you will find an abstract of the talk, as well as a biography of the speaker.

Pascal, Jean, Zhanhao, and Ron,
HPlan Workshop Organizers,
August 2021
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Invited Talk

Each year so far we had one or two invited talks. This year, by Malik Ghallab.

Hierarchical Online Reasoning for the Integration of Planning and Acting

Hierarchization in planning has often been viewed mainly as a means for reducing the search
complexity, to be paid for with additional domain modeling efforts. HTN planning, for example,
has sometime been opposed to generative planning techniques, and referred to as a programming
paradigm in planning. We pursue here a quite different motivation for hierarchization than tractable
computations in a huge search space. Namely, we are interested in planning for the purpose of
acting, and consider hierarchization as a central concept for the integration of reasoning on actions
and performing them.

We have argued in [2] that the design of a cognitive actor has to rely on two interconnected
principles: (i) hierarchically organized deliberation, and (ii) continual online planning and reasoning.
Many challenging problems for such a design have been underlined in [2], several of which remain
pending, while a few have progressed towards acceptable solutions. This talk will report on a line
of work that illustrates such a progress.1 Initiated in [1, Chap. 3], the work was pursued through
several algorithmic developments and trials, e.g., in [6, 3, 5]; it reached a comprehensive stage
in [4].

The talk will motivate the integrated planning and acting issues and present three technical com-
ponents:

• A hierarchical task-oriented knowledge representation for expressing operational models of
actions (how to do things), which relies on a collection of refinement methods describing
alternative ways to handle tasks and react to events. A refinement method can be any com-
plex algorithm, with subtasks to be refined recursively and nondeterministic primitive actions
which query and change the world.

• A Refinement Acting Engine (RAE) which interacts with an execution platform and performs
online reasoning for the achievement of tasks and reaction to events by following refinement
methods adapted to the current dynamic context, and retrying alternative methods when
needed. RAE chooses its refinement methods with the help of a online optimizing planner.

• A Monte Carlo Tree Search planner, called UPOM, which assesses the utility of possible
methods and finds an approximately optimal one for RAE to pursue an ongoing activity.
UPOM is a progressive deepening, receding-horizon anytime planner which relies on domain-
dependent heuristics, learned from simulations and/or real-world interactions.

1A line of work in collaboration with my co-authors Dana Nau, Paolo Traverso, Sunandita Patra and James Mason.
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A few empirical results will be presented.2 Extensions of the approach for handling temporal issues
as well as space and motion planning issues (to address the well known “Task and Motion Plan-
ning” TAMP problems) will be briefly discussed, together with perspectives for learning refinement
methods for operational models.
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A Hierarchical Approach to Multi-Agent Path Finding

Han Zhang, Mingze Yao, Ziang Liu, Jiaoyang Li, Lucas Terr, Shao-Hung Chan,
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Abstract

The Multi-Agent Path Finding (MAPF) problem arises in
many real-world applications, ranging from automated ware-
housing to multi-drone delivery. Solving the MAPF prob-
lem optimally is NP-hard, and existing optimal and bounded-
suboptimal MAPF solvers thus usually do not scale to large
MAPF instances. Greedy MAPF solvers scale to large MAPF
instances, but their solution qualities are often bad. In this pa-
per, we therefore propose a novel MAPF solver, Hierarchical
Multi-Agent Path Planner (HMAPP), which creates a spatial
hierarchy by partitioning the environment into multiple re-
gions and decomposes a MAPF instance into smaller MAPF
sub-instances for each region. For each sub-instance, it uses
a bounded-suboptimal MAPF solver to solve it with good so-
lution quality. Our experimental results show that HMAPP
solves as large MAPF instances as greedy MAPF solvers
while achieving better solution qualities on various maps.

Introduction
The Multi-Agent Path Finding (MAPF) problem arises in
many real-world applications, including automated ware-
housing (Wurman, D’Andrea, and Mountz 2008; Li et al.
2020) and multi-drone delivery (Choudhury et al. 2020). In
the MAPF problem, each agent is required to move from a
start vertex to a goal vertex on an undirected graph while
avoiding conflicts with other agents. A conflict happens
when two agents stay at the same vertex or traverse the same
edge in opposite directions at the same time.

Two common objectives for the MAPF problem are
minimizing the sum of the path costs and minimizing
the makespan. Solving the MAPF problem optimally for
either objective is NP-hard (Yu and LaValle 2013; Ma
et al. 2016). Thus, existing optimal and bounded-suboptimal
MAPF solvers (Sharon et al. 2015; Barer et al. 2014) usu-
ally do not scale to large MAPF instances. Greedy MAPF
solvers (Silver 2005) are able to scale to large MAPF in-
stances, but their solution qualities are often bad.

Although planning can find MAPF solutions of good
quality for small MAPF instances, planning in small steps
from one vertex to another has the disadvantage that its run-
time can dramatically increase with the number of agents
and the size of the environment. In this paper, we approach
the MAPF problem from a rarely-pursued spatial-hierarchy
perspective. We propose a novel MAPF solver, Hierarchical

Multi-Agent Path Planner (HMAPP). In HMAPP, a high-
level planner generates a high-level plan for each agent that
moves the agent from one region to another, and each re-
gional planner subsequently refines the high-level plan to a
low-level path for the agent. Therefore, regional planners
can use existing MAPF techniques to find solutions with
good qualities while the total runtime of HMAPP is still rea-
sonable for large MAPF instances.

Our experimental results show that HMAPP solves as
large MAPF instances as greedy MAPF solvers while
achieving better solution qualities on various maps. The so-
lutions of HMAPP have makespans for large MAPF in-
stances that are about 50% smaller than the ones of the
spatial-hierarchical MAPF solver Ros-dmapf (Pianpak et al.
2019).

Related Work
Spatial hierarchies have been used for path planning (Botea,
Müller, and Schaeffer 2004; Pelechano and Fuentes 2016)
by partitioning a map into several regions, precomputing
and caching the optimal sub-paths that connect adjacent re-
gions and abstracting these sub-paths to edges of a smaller
abstract graph, that is then searched. These approaches do
not directly apply to MAPF since the cached sub-paths do
not take conflicts between agents into account and are thus
difficult to reuse for MAPF.

Hierarchies have also been used for multi-agent motion
planning (Kapadia et al. 2013; Ma et al. 2017), but these ap-
proaches do not use spatial hierarchies but rather planning
hierarchies that plan on different abstraction levels, such as
path and motion planning. HMAPP can be used for path
planning in such approaches.

Spatial hierarchies have not yet been used extensively
for MAPF. The Spatially Distributed Multi-Agent Planner
(SDP) (Wilt and Botea 2014) partitions a map into high-
and low-contention regions and uses different MAPF solvers
for regions of different types. Unlike HMAPP, SDP does
not partition the map into several regions in the absence of
high-contention regions and cannot solve MAPF instances
unless all start or goal vertices are in low-contention re-
gions. Ros-dmapf (Pianpak et al. 2019), like HMAPP, parti-
tions a map into several regions. Unlike HMAPP, Ros-dmapf
uses answer set programming for the regional planners and
has to synchronize the execution of the high-level plans of
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all agents, causing agents that reach their next regions ear-
lier than other agents to wait unnecessarily for those other
agents, which impacts the solution quality negatively.

Preliminaries
In this section, we provide background material on MAPF,
the optimal MAPF solver Conflict-Based Search (CBS) and
the bounded-suboptimal MAPF solver Enhanced Conflict-
Based Search (ECBS).

MAPF
The MAPF problem is defined by an undirected graph G =
(V,E) and a set of m agents {a1 . . . am}. Each agent has
a start vertex si ∈ V and a goal vertex gi ∈ V . In each
timestep, an agent either moves to an adjacent vertex or
waits at its current vertex. Both move and wait actions have
unit cost unless the agent terminally waits at its goal vertex,
which has zero cost. A path of an agent is a sequence of
move and wait actions from its start vertex to its goal vertex.
A sub-path of an agent is a sequence of actions from one
vertex at a specific timestep to another vertex at a specific
timestep. The path cost of a path is the accumulated cost
of all actions in this path. A vertex conflict happens when
two agents stay at the same vertex simultaneously, and an
edge conflict happens when two agents traverse the same
edge in opposite directions simultaneously. A solution is a
set of conflict-free paths of all agents. The Sum of path Costs
(SoC) is the sum of the path costs of the paths of all agents,
and the makespan is the maximum path cost of the paths of
all agents. In this paper, we consider only graphs that are
four-neighbor grids (Stern et al. 2019). However, HMAPP
can be applied to any graph as long as a graph-partitioning
approach is provided for it.

CBS and ECBS
CBS (Sharon et al. 2015) is an optimal two-level MAPF
solver. On the high level, CBS maintains a Constraint Tree
(CT). Each CT node contains a set of constraints and a set of
paths, one for each agent, that satisfies all these constraints.
The cost of a CT node is the SoC or makespan of all these
paths, depending on the objective of the MAPF problem. On
the low level, for each CT node, CBS finds a path for each
agent that has the smallest path cost while satisfying all con-
straints of the CT node (but might conflict with the other
paths). When expanding a CT node, CBS returns a solution
if its paths are conflict-free. Otherwise, CBS picks a con-
flict, splits the CT node into two child CT nodes and adds a
constraint to each child CT node to prohibit either one or the
other of the two conflicting agents from using the conflicting
vertex or edge at the conflicting timestep. On the high level,
CBS expands nodes in a best-first order. Therefore, the paths
of the first expanded CT node with conflict-free paths form
an optimal solution.

ECBS(w) (Barer et al. 2014) is a bounded-suboptimal
MAPF solver based on CBS. Given suboptimality factor
w, ECBS(w) finds a w-suboptimal solution. The high- and
low-level search algorithms of ECBS are focal search (Pearl

Algorithm 1: HMAPP.
input: A MAPF instance.

1 initialize();
2 find HL plan();
3 T ← 0;
4 foreach region r ∈ R do
5 Pr.plan initial path();
6 end
7 while paths for all agents to their goal vertices have

not yet been found do
8 T ← next timestep when an agent is ready to

enter its next region;
9 foreach region r ∈ R do

10 A′ ← agents that are ready to enter r at
timestep T ;

11 if A′ is not empty then
12 Pr.replan(A

′);
13 end
14 end
15 foreach region r ∈ R do
16 if an agent is delayed to exit r at timestep T

then
17 Pr.replan(∅);
18 if Pr.replan failed to find a solution then
19 return failure;
20 end
21 end
22 end
23 end
24 return extract solution();

and Kim 1982) instead of best-first search. Unlike best-
first search, focal search maintains a FOCAL list, which
is a subset of the OPEN list of search nodes, and expands
nodes from the FOCAL list based on a user-provided tie-
breaking criterion. On the low-level, ECBS uses focal search
to find paths that have fewer conflicts with the paths of other
agents. On the high-level, ECBS uses focal search to expand
CT nodes that more likely lead to a conflict-free bounded-
suboptimal solution.

HMAPP
Algorithm 1 shows the pseudo-code of HMAPP. HMAPP
first partitions the vertices into regions. Let R denote the
set of all regions. For each pair of adjacent regions, HMAPP
finds pairs of adjacent vertices (one from each region), called
boundary pairs, and uses them to transfer agents between re-
gions. To simplify the interaction between regions, agents
are allowed to travel in only one direction through each
boundary pair. A high-level planner generates a high-level
plan for each agent (Line 2), which specifies the sequence
of regions that the agent should visit to reach its goal vertex.
When we describe HMAPP, we assume that the high-level
plan of each agent does not include each region more than
once so that each agent has at most one sub-path in each
region. However, this assumption is only for the ease of pre-
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sentation. HMAPP allows the high-level plan of an agent to
include a region multiple times and maintains one sub-path
for each visit of the agent to the region.

For an agent ai that moves from region r to its next re-
gion r′, the regional planner Pr plans a sub-path for ai to a
boundary vertex v that is part of a boundary pair 〈v, v′〉 to
region r′. v (v′) is the determined exit (entry) vertex of ai
from r (to r′). The exit (entry) timestep of ai from r (to r′)
is the last timestep that ai is in r. Pr initially assumes that
ai immediately exits r once it has followed its sub-path in
r. However, the actual exit timestep is determined by the re-
gional planner Pr′ when Pr′ determines the entry timestep
and the sub-path for ai in r′, which must not be smaller than
the timestep when ai has followed its sub-path in r. Once
determined, the entry and exit timesteps and the entry and
exit vertices of agents can no longer be changed.

In the beginning of Algorithm 1, for each region r, Pr

plans a set of conflict-free sub-paths for all agents in the re-
gion (Lines 4-6). We say that agent ai is ready to enter (exit)
region r′ (r) at a timestep t iff (1) ai has followed its sub-
path in r at timestep t and (2) the exit timestep of ai from
r has not been determined yet. Inside the while loop (Lines
7-23), T is updated to the earliest timestep when an agent
is ready to enter its next region. HMAPP iterates over each
region r and invokes Pr to determine the entry timesteps for
agents that are ready to enter r at timestep T (Lines 9-14).
Let ai be such an agent. We say that ai is delayed to exit its
region iff its determined entry timestep is larger than T . Pr

might have to replan the sub-paths of all agents in r if such a
delay happens. HMAPP iterates over each region r that has a
delayed-to-exit agent and invokes Pr to replan the sub-paths
of all agents (Lines 15-22). Except for the initial planning,
each regional planner plans at most twice for each value of
T , once to take the ready-to-enter agents into account and
once to take the delayed-to-exit agents into account. When
replanning, each regional planner is allowed to modify the
entire sub-paths of its agents in the region (even the parts be-
fore timestep T ) as long as they obey the determined entry
and exit timesteps and the determined entry and exit vertices.
HMAPP repeats this procedure until it has found paths for
all agents to their goal vertices. Finally, HMAPP appends
the sub-paths in different regions and returns the obtained
paths as the solution (Line 24).

The resulting paths are conflict-free because (1) the sub-
paths inside each region are conflict-free and (2) no edge
conflict happens when an agent exits a region since the
movements within each boundary pair are in one direction
only. However, HMAPP is not a complete MAPF solver
since the sub-instances for the regions can be unsolvable
even if a solution for the MAPF instance exists. Limiting the
number of agents in each region may make HMAPP com-
plete, which we leave for future work.

HMAPP is a general algorithmic framework that can use
different approaches for graph partitioning, high-level plan-
ning and regional planning. In the following sections, we
describe how each of these components is implemented cur-
rently.

r2

r0 r1

r3
A

B

C

D

E

F

G

H

1 2 3 4 5 6 7 8

Figure 1: Shows an example of partitioning an 8 × 8 grid
into four regions ri (for i = 0, . . . 3), each with a different
color. Shaded areas are obstacles. Arrows between adjacent
vertices indicate boundary pairs and their movement direc-
tions.

Graph Partitioning and High-Level Planning

In this paper, we consider only MAPF instances on four-
neighbor grids (Stern et al. 2019), and HMAPP partitions the
grids into rectangular regions of similar sizes, determined
by parameters num row and num col, which specify the
numbers of regions in the vertical and horizontal directions,
respectively. If a region is not connected, then HMAPP par-
titions it further. HMAPP then iterates over each pair of adja-
cent regions, collects all pairs of adjacent vertices, one from
each each region, that have not yet been used in any bound-
ary pair and adds them to the set of boundary pairs. It as-
signs alternating directions to boundary pairs so that there
are enough boundary pairs for agents to move from one re-
gion to another.

A naive partitioning approach can result in a bad parti-
tion and poor scalability of HMAPP on grids with obstacles.
If HMAPP partitions the grid in Figure 1 into 2 × 2 = 4
regions, each of size 4× 4, then it further partitions the top-
right region into two regions since it is not connected. One
of the resulting regions consists of cells F5, G5 and H5 and
is corridor-shaped. For a corridor-shaped region, a solution
might not exist for even only two agents. To improve the
quality of the resulting partition, (1) if there is a corridor-
shaped region, then HMAPP randomly picks one of its adja-
cent regions (if there is one) and merges these two regions to
eliminate regions that contain only narrow corridors, and (2)
if there is a pair of adjacent regions that share fewer than two
boundary pairs, then HMAPP merges them to ensure that an
agent can always reach an adjacent region from its current
region. HMAPP repeats this procedure until no such cases
exist any longer. Figure 1 shows the region r0 obtained after
merging the top-left region with the corridor-shaped region.

The high-level planner of HMAPP is responsible for find-
ing high-level plans for all agents. For each agent, HMAPP
randomly picks one of its shortest paths from its start ver-
tex to its goal vertex that moves from region to region only
at boundary pairs in their directions. HMAPP then gener-
ates the high-level plan that corresponds to the sequence of
regions visited by this path. Due to Partitioning Rule (2)
above, there always exists such a path for each agent.
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Algorithm 2: replan() for regional planners.
input: Regional planner Pr and a set of agents A′,

which is the set of agents that are ready to
enter r.

1 Pr.P ← ECBS (Pr.A ∪A′,Pr.C);
2 if ECBS failed to find a solution then
3 return failure;
4 end
5 foreach agent ai ∈ A′ do
6 t← entry timestep of ai according to Pr.P ;
7 〈v′, v〉 ← the boundary pair ai uses to enter r;
8 r′ ← the region v′ is part of;
9 Pr.C.add(entry〈ai, v, t〉);

10 Pr′ .C.add(exit〈ai, v′, t〉);
11 end
12 Pr.A← Pr.A ∪A′;
13 return success;

Regional Planning
The regional planners of HMAPP find sub-paths for the
agents inside their regions. The regional planner Pr for re-
gion r maintains multiple data structures to keep track of
the agents and their sub-paths. Pr.A is the set of agents that
already have determined entry timesteps to r. Pr.C is the
set of constraints of the agents in Pr.A that keep track of
their entry timesteps to r and exit timesteps from r and the
associated entry and exit vertices, respectively. Two types
of constraints can be added to Pr.C. The first one is an
entry-vertex-timestep constraint entry〈ai, v, t〉, which en-
forces that agent ai enters r from entry vertex v at entry
timestep t. The second one is an exit-vertex-timestep con-
straint exit〈ai, v, t〉, which enforces that agent a exits re-
gion r from exit vertex v at exit timestep t. Pr.P is a set of
conflict-free sub-paths of the agents in Pr.A that satisfy the
constraints in Pr.C.

HMAPP uses ECBS to solve the regional planning prob-
lems. Agent ai is a local agent of region r if ai does not
have a next region in its high-level plan when it is in r;
otherwise, agent ai is a migrating agent of region r. For
each migrating agent ai of region r, let pi denote the sub-
path of ai in r and 〈v, v′〉 denote the boundary pair to the
next region of ai that pi leads to. The cost of ai for Pr is
cost(pi) + h(v′) + 1, where h(v′) is an admissible heuristic
function for the distance from v′ to gi (if all other agents are
ignored) and cost(pi) is the path cost of pi. For each local
agent ai of r, the cost of ai for Pr is the path cost of pi.

On Line 12 of Algorithm 1, HMAPP invokes Algorithm 2
to plan the entry timestep and sub-path of each agent ai in
A′ that is ready to enter region r from region r′ via bound-
ary pair 〈v′, v〉 at timestep T and adds both an entry-vertex-
timestep constraint to Pr.C so that ai must enter region r at
v at timestep t (Line 9 of Algorithm 2) and an exit-vertex-
timestep constraint to Pr′ .C so that ai must exit from region
r′ at v′ at timestep t (Line 10 of Algorithm 2).

On Line 17 of Algorithm 1, HMAPP invokes Algorithm 2
to replan the sub-paths of the agents in Pr.A to ensure

1

2
A

B

C

D

1 2 3 4

Figure 2: Shows an example where the regional planner re-
plans the sub-path of agent a1 when agent a2 is ready to
enter the region. Agent a1 has its start vertex at D2, and
agent a2 is ready to enter the region from entry vertex B4 at
timestep 2.

1

2
A

B

C

D

E

1 2 3 4 5

Figure 3: Shows an example where the regional planner is
unable to find a solution. Agent a1 has its start vertex at E3,
and agent a2 is ready to enter the region from entry vertex
B5 at timestep 3.

that the newly-added entry-vertex-timestep and exit-vertex-
timestep constraints are satisfied. During this procedure, no
new constraints are added.

The regional planning problem is similar to the online
MAPF problem (Švancara et al. 2019), where agents move
along their paths as T increases. However, agents do not
move in the regional planning problem. Therefore, when Pr

replans the sub-paths for the agents in Pr.A, it is allowed to
modify their entire sub-paths in r.

Example 1. Figure 2 shows an example where the regional
planner replans the sub-path of agent a1 when a new agent
a2 is ready to enter the region. Initially, only a1 is in the
region, and the regional planner finds a sub-path for a1 to
exit the region at A4 at timestep 4, which is shown by the
dashed blue line. At timestep 2, a1 is at C4, and a2 is ready
to enter the region. The regional planner then finds new sub-
paths for a1 and a2. If a1 follows its original sub-path, then
a2 must be delayed to exit its region. However, there is an
alternative sub-path for a1, which is shown by the solid blue
line and has the same path cost as the current sub-path of
a1. The regional planner therefore replans the sub-paths so
that a1 uses the alternative sub-path and a2 is not delayed
to exit its region. In contrast, an online MAPF solver could
not change the movement of the agents before timestep 2.

Handling Regional Planning Failures
On Lines 9-10 of Algorithm 2, new constraints are added
that determine the entry and exit timesteps of agents. Since
the exit timestep of an agent from its current region is de-
termined by the regional planner of the next region of the
agent, this exit timestep may prevent the regional planner of
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the current region of the agent from finding a solution.

Example 2. Figure 3 shows an example where the regional
planner is unable to find a solution. Initially, only agent a1
is in the region, and the regional planner finds a sub-path
for a1 to exit the region at C5 at timestep 4, which is shown
by the solid blue line. At timestep 3, agent a2 is ready to
enter the region. The regional planner finds the sub-paths
for a1 and a2 shown in the figure, where neither agent needs
to wait since the regional planner assumes that a1 exits the
region immediately when it is at C5 and a2 exits the region
immediately when it is at E5. At timestep 4, a1 is at C5
and its exit timestep is determined. Assume that it is 10. The
regional planner then finds new sub-paths for a1 and a2, for
example, where a1 waits in E3 for 6 timesteps and a2 still
does not wait since the regional planner assume that a2 exits
the region immediately when it is at E5. At timestep 7, agent
a2 is at E5 and its exit timestep is determined. Assume that
it is 9. The regional planner then tries to find new sub-paths
for a1 and a2 but fails since a2 exiting the region at E5
at timestep 9 implies that a1 cannot exit the region before
timestep 12.

When a regional planner is unable to find a solution (Lines
18-19 of Algorithm 1), HMAPP determines the vertices of
all agents at timestep T , deletes all constraints and restarts
HMAPP at timestep T . In Example 2, the regional planner
fails to find a solution at timestep T = 7, and HMAPP
restarts at timestep 7 with agent a1 at E4 and agent a2 at
E5. Assume that the exit timestep of a2 is again determined
to be 9. The regional planner then finds new sub-paths for a1
and a2, for example, where a1 waits at E4 (until a2 exits the
region) and then moves to C5 and exits the region immedi-
ately. Therefore, HMAPP is now able to find a solution.

Experimental Evaluation
We compared HMAPP with Ros-dmapf (Pianpak et al.
2019), CA* (Silver 2005), WHCA* (Silver 2005) and ECBS
on different grids. CA* is a greedy MAPF solver which
plans for one agent at a time. WHCA* is a variant of CA*
which interleaves moving agents and planning within a time
window of a given length. The objectives for ECBS and the
regional planners of HMAPP were all minimizing the SoC,
and the suboptimality factors for ECBS and the regional
planners of HMAPP were all set to 1.2. The length of the
time window of WHCA* was set to 16, which we found
to achieve a higher success rate than smaller window sizes
while still achieving a small runtime. Except for Ros-dmapf,
all MAPF solvers were implemented in C++ and share the
same code base as much as possible. We ran all experiments
on a laptop with an i7-8850H CPU and 32 GB of memory.

Experiment 1: Comparison with Ros-dmapf. We did
not have a working implementation of Ros-dmapf avail-
able. Therefore, to compare HMAPP with Ros-dmapf, we
ran HMAPP on the 60 × 60 empty grid MAPF instances
used in (Pianpak et al. 2019) and compared the results of
HMAPP with the results of Ros-dmapf in the paper. Ta-
ble 1 shows the average makespans and numbers of moves
of HMAPP and Ros-dmapf. The number of moves is the sum
of the number of move actions of all agents. HMAPP used

Agents Ros-dmapf HMAPP
144 149 5,996 99 6,043
288 185 12,934 118 12,487
432 230 21,627 118 19,307
576 264 30,704 116 25,520
720 310 43,740 120 32,951

Table 1: Shows the average makespans and numbers of
moves of Ros-dmapf and HMAPP on the 60 × 60 empty
grid for different numbers of agents.

(a) 256× 256 empty grid (b) 128× 128 random grid

(c) Paris 1 256

(d) warehouse-10-20-10-2-2

Figure 4: Shows the grids of the MAPF instances used in
Experiment 2.

both the partition size 10 × 10 and runtime limit of 100s
used in (Pianpak et al. 2019). HMAPP solved all MAPF in-
stances within the time limit. Table 1 shows that the average
makespan of the solutions of HMAPP was less than half of
the average makespan of the ones of Ros-dmapf for MAPF
instances with 576 agents or more.

Experiment 2: Comparison with ECBS and greedy
MAPF solvers. We evaluated all MAPF solvers on the four
grids shown in Figure 4: (a) the 256 × 256 empty grid, (b)
a 128 × 128 grid with 10% randomly blocked vertices, (c)
Paris 1 256 and (d) warehouse-10-20-10-2-2. Grids (c) and
(d) are from the MAPF benchmark (Stern et al. 2019). We
did not use the empty and random grids from the MAPF
benchmark since we were interested in large MAPF in-
stances. For Grids (a)-(c), we used HMAPP with partition
sizes (num row, num col) = (3, 3), (5, 5) and (7, 7). For
Grid (d), we used HMAPP with partition size (7, 5) since
the runtime of HMAPP turned out to be very sensitive to the
size of the regions.

Figure 5 shows that, on most grids, the success rates of
ECBS and CA* quickly dropped as the number of agents
increased. WHCA* successfully solved all MAPF instances
for up to 900 agents on Grid (a). However, on Grids (b)-(d),
the success rate of WHCA* was lower than the ones of some
versions of HMAPP since WHCA* plans only within a time
window of limited length.
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Figure 5: Shows the success rates (that is, the percentages of MAPF instances solved within a time limit of two minutes) of
various MAPF solvers on each grid for different numbers of agents.
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Figure 6: Shows the average path costs per agent (averaged over the MAPF instances solved by all MAPF solvers that success-
fully solved at least one MAPF instance) of various MAPF solvers on each grid for different numbers of agents.
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Figure 7: Shows the average runtimes (in seconds, averaged over the MAPF instances solved by all MAPF solvers that success-
fully solved at least one MAPF instance) of various MAPF solvers on each grid for different numbers of agents.

Figure 6 shows that all versions of HMAPP had smaller
average path costs on all grids than CA* and WHCA*. Ex-
cept for Grid (c), the average path costs of HMAPP were
more than 10% smaller than those of WHCA* for large num-
bers of agents. Except for Grid (d), which has many narrow
corridors, the average path costs of HMAPP were close to
the average path costs of ECBS.

Figure 7 shows that all versions of HMAPP had smaller
average runtimes than CA* and ECBS on all grids because
HMAPP does not plan paths across the entire grid. However
HMAPP had larger average runtimes than WHCA* since
WHCA* plans within smaller time windows.

Conclusions and Future Work

In this paper, we have proposed HMAPP which solves the
MAPF problem by creating a spatial hierarchy that decom-
poses a MAPF instance into MAPF sub-instances. Our ex-
perimental results show that HMAPP solves as large MAPF
instances as greedy MAPF solvers while achieving better so-
lution qualities on various maps.

Our future work includes (1) making HMAPP complete
by controlling the number of agents in each region; (2) au-
tomatically generating a good partition of the graph of a
MAPF instance and (3) developing high-level planning ap-
proaches that take potential congestion into account.
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Abstract

Plan Verification is the task of deciding whether a sequence
of actions is a solution for a given planning problem. In HTN
planning, the task is computationally expensive and may be
up to NP-hard. However, there are situations where it needs to
be solved, e.g. when a solution is post-processed, in systems
using approximation, or just to validate whether a planning
system works correctly (e.g. for debugging or in a competi-
tion). In the literature, there are verification systems based on
translations to propositional logic and based on techniques
from parsing. Here we present a third approach and trans-
late HTN plan verification problems into HTN planning prob-
lems. These can be solved using any HTN planning system.
We test our solver on the set of solutions from the 2020 In-
ternational Planning Competition. Our evaluation is yet pre-
liminary, because it does not include all systems from the lit-
erature, but it already shows that our approach performs well
compared with the included systems.

1 Introduction
Plan Verification is the task of deciding whether a sequence
of actions is a solution for a given planning problem. It is
necessary in several situations, e.g. when a plan is post-
processed, or to verify whether a planning system works cor-
rectly (e.g. for debugging or in a competition).

In classical planning, it can be solved in (lower) polyno-
mial time. In Hierarchical Task Network (HTN) planning
(Bercher, Alford, and Höller 2019), the complexity depends
on several parameters:
• On whether the decomposition steps (i.e., the chosen

methods) leading to a solution are known.
• On the specific problem class (e.g., whether it’s partially

or totally ordered).
When we look at the formalisms in HTN planning, the de-

composition steps are usually not regarded part of a solution.
Since only the contained primitive tasks (i.e., actions) need
to be executed, there is often no need to do so. However,
there are use cases in the literature where they are needed,
mainly for communication with a user on different levels of
abstraction (Bercher et al. 2021; Behnke et al. 2020a; Köhn
et al. 2020; de Silva, Padgham, and Sardina 2019). When
they are present (and if full information about task labeling
is available so that multiple occurrences of the same task
can still be distinguished) plan verification can be solved in

polynomial time. Another polytime case is given by Totally
Ordered (TO) HTN problems, where all methods and the ini-
tial task network are totally ordered. In this case, plan ver-
ification is cubic and resembles the problem of parsing in
context-free languages. Otherwise, for general partially or-
dered (PO) HTN problems, it becomes NP-hard (Behnke,
Höller, and Biundo 2015).

Both cases, i.e., TO and PO HTN planning problems,
were considered in the 2020 International Planning Compe-
tition (IPC). Here, the participating systems needed to return
the decomposition steps to allow the organizers to verify so-
lutions in polynomial time. However, though it is possible
for the solvers to track this information, it causes technical
problems – consider e.g. the various compilation steps often
performed in preprocessing1 that need to be undone in post-
processing. In other cases it is even not possible, e.g. when
postoptimizing solutions or when internally using approx-
imations like e.g. the TOAD system (Höller 2021), which
overapproximates the solution set of a problem and needs
verification as a regular step of its planning procedure to
make sure only to return correct solutions.

In the literature, there are systems to solve the problem via
translation to propositional logic (Behnke, Höller, and Bi-
undo 2017) and based on parsing techniques (Barták, Mail-
lard, and Cardoso 2018; Barták et al. 2020).

In this paper, we present an approach to compile HTN ver-
ification problems to common HTN planning problems. Our
compilation is based on an approach for plan recognition as
planning (Höller et al. 2018). It is applicable in both TO and
PO HTN planning. We combine our transformation with two
planning systems from the PANDA framework (Höller et al.
2021) and evaluate it on a new benchmark set that includes
the models from the 2020 IPC and solutions generated by
the IPC participants. It yields good results both in PO and in
TO HTN planning.

The paper is structured as follows: we first introduce the
formal framework used in the paper (Section 2), then we in-
troduce the compilation (Section 3), describe the realization
(Section 4) and evaluate the approach (Section 5). We con-
clude the paper with a short discussion (Section 6).

1See e.g. the PANDA grounder (Behnke et al. 2020b) used in
the following. Among other compilations, it changes decomposi-
tion rules until convergence, which is not a simple task to undo.
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2 Formal Framework
In HTN planning there are two types of tasks, primitive and
abstract tasks. Primitive tasks are equivalent to actions in
classical planning, i.e., they are directly applicable in the
environment and cause state transition. Abstract (or com-
pound) tasks are not directly applicable and need to be de-
composed into other tasks in a process similar to the deriva-
tion of words from a formal grammar. A solution to an HTN
planning problem needs to be derived via this grammar.

Formally, an HTN planning problem is a tuple p = (F,
C, A, M, s0, tnI , g, prec, add , del). F is a set of proposi-
tional state features. A state s is defined by the subset of state
features that hold in it, s ∈ 2F , all other state features are as-
sumed to be false. s0 ∈ 2F is the initial state of the problem,
and g ⊆ F is the state-based goal description2. A state s is
called a goal state if and only if g ⊆ s. A is a set of symbols
called primitive tasks (also called actions). These symbols
are mapped to a subset of the state features by the functions
prec, add , del , which are all defined as f : A→ 2F and de-
fine the actions’ preconditions, add-, and delete-effects, re-
spectively. An action a is applicable in a state s if and only
if prec(a) ⊆ s. When an applicable action a is applied in a
state s, the state s′ = γ(s, a) resulting from the application
is defined as s′ = (s \ del(a)) ∪ add(a). A sequence of ac-
tions a1, a2, . . . , an is applicable in some state s0 if and only
if ai is applicable in the state si−1, where si for 1 ≤ i ≤ n
is defined as si = γ(si−1, ai). We call the state sn the state
resulting from the application.

Tasks in HTN planning are maintained in task networks.
A task network is a partially ordered multiset of tasks. For-
mally, it is a triple tn = (T ,≺, α). T is a set of identi-
fiers (ids) that are mapped to the actual tasks by the func-
tion α : T → N , where N = A ∪ C is the union of the
primitive tasks A and the abstract (compound) tasks C. ≺
is a partial order on the task ids. tnI is the initial task net-
work, i.e., the task network the decomposition process starts
with. Legal decompositions are defined by the set of (de-
composition) methods M . A method is a pair (c, tn), where
c ∈ C defines the task that can be decomposed using the
method, and the task network tn defines into which tasks
it is decomposed. When a task t from a task network tn is
decomposed using a method (c, tn ′), it is replaced by the
tasks in tn ′. When t has been ordered with respect to other
tasks in tn , the new tasks inherit these ordering constraints.
Formally, a method m = (c, tn) decomposes a task network
tn1 = (T1,≺1, α1) that contains a task id t ∈ T1 with
α1(t) = c into a task network tn2, which is defined as fol-
lows. Let tn ′ = (T ′,≺′, α′) be a copy of tn that uses ids
not contained in T1. Then tn2 is defined as:

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D = {(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

2In HTN planning, there is usually no state-based goal given,
because it can be compiled away. However, it makes our definition
in the next sections more natural.

When a task network tn can be decomposed into a task
network tn ′ by applying (a finite sequence of) 0 or more
methods, we write tn →∗ tn ′.

A task network tnS = (TS ,≺S , αS) is a solution to a
given HTN planning problem if and only if the following
conditions hold:
1. tnI →∗ tnS , i.e., it can be derived from the initial task

network,
2. ∀t ∈ TS : αS(t) ∈ A, i.e., all tasks are primitive, and
3. there is a sequence (i1i2 . . . in) of the task ids in

TS in line with the ordering constraints ≺S such that
(αS(i1)αS(i2) . . . αS(in)) is applicable in s0 and results
in a goal state.
We call an HTN method totally ordered when the tasks

in the contained task network are totally ordered. We call an
HTN planning problem totally ordered when all contained
methods and the initial task network are totally ordered.
Definition 1 (Plan Verification). Given an HTN planning
problem p and a sequence of actions (a1a2 . . . an), plan
verification is the problem to decide whether there is a
task network (TS ,≺S , αS) that is a solution for p and
for an ordering (i1i2 . . . in) of the task identifiers TS ful-
filling solution criterion 3 as given above, it holds that
(αS(i1)αS(i2) . . . αS(in)) = (a1a2 . . . an).

3 Compiling Verification Problems to
Planning Problems

Let p = (F, C, A, M, s0, tnI , g, prec, add , del) be an HTN
planning problem, π = (a1a2 . . . an) a sequence of actions
out of A, and v = (p, π) a plan verification problem. We
compile v into a new HTN planning problem p′ = (F ′, C ′,
A′, M ′, s′0, tnI , g

′, prec′, add ′, del ′) that has a solution if
and only if v is solvable.

The encoding is widely identical with the one introduced
by Höller et al. (2018) for plan and goal recognition (PGR)
as planning. It has also been shown that it can be used
for plan repair (Höller et al. 2020b). We first change the
state and the actions of the original problem such that the
only applicable sequence of actions exactly resembles π. Let
f0, f1, f2, . . . , fn be new state features. We use them to en-
code which actions out of π have already been executed. In
addition to that, we need a state feature ⊥, which will never
be reachable. The set of state features of p′ is defined as
F ′ = F ∪ {f0, f1, f2, . . . , fn} ∪ {⊥}. In the beginning, no
action out of π has been executed, i.e., s′0 = s0 ∪ {f0}. We
want solutions to exactly equal π, i.e., all actions need to be
included. This is enforced by including fn in the state-based
goal definition g, i.e., g′ = g ∪ {fn}.

For ai ∈ π with 1 ≤ i ≤ n, we introduce a new action
a′i. The preconditions of the new actions enforce the correct
position in the generated solution

prec′(a′i) = prec(ai) ∪ {fi−1},
each action deletes its own precondition and adds the one of
the next action in the solution

add ′(a′i) = add(ai) ∪ {fi},
del ′(a′i) = del(ai) ∪ {fi−1}.
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Please be aware that an action out of A may appear more
than once in the solution. In such cases, there will be mul-
tiple copies of the action in A′. The novel actions mimic
the state transition of the original ones, but additionally en-
sure their respective position in the solution. All other ac-
tions shall never appear in any solution, so we add the new
state feature⊥ that is never reachable to their preconditions.

∀a ∈ A : prec′(a) = prec(a) ∪ {⊥},
add ′(a) = add(a),

del ′(a) = del(a)

The new set of actions is defined as A′ = A∪{a′i | ai ∈ π}.
Due to the new state features, preconditions and effects,

there is only one sequence of actions that is applicable and
leads to a state-based goal. However, none of the new actions
can ever be reached by decomposing the initial task network.
To make this possible, we need to modify the decomposition
hierarchy. It shall be possible for a newly introduced action
a′ to be placed at exactly those positions where the action
a might have been in the original model. We thereby need
to keep in mind that there might be multiple copies of some
action a, so we cannot just replace them in the methods. We
need to introduce a new choice point to choose which copy
a′, a′′, . . . of a shall be at which position in the action se-
quence. We do this by introducing one novel abstract task
ca for each action a. Let CA = {ca | a ∈ A}. We further
introduce new methods to decompose this new task into one
of the copies of a.

MA = {(ca, ({i}, ∅, {i 7→ a′})) | a′ ∈ π}

We define C ′ = C ∪CA andM ′ =M ∪MA and have fully
specified our compiled problem p′.

The resulting encoding is nearly identical with the one
used in the fully observable case of plan and goal recogni-
tion as planning (Höller et al. 2018). The only difference is
the additional precondition of the actions not included in the
solution. While the PGR encoding forces these actions to
be placed after a given plan prefix of observed actions, the
encoding here makes them entirely unreachable.

3.1 Some Technicalities
The models in our benchmark are those from the 2020
IPC, which are modeled in the description language
HDDL (Höller et al. 2020a). In HDDL, models may include
state-based preconditions for methods. These are precondi-
tions as known from actions, which have to hold for the
method to be applicable. The semantics of such precondi-
tions is a bit problematic (see Höller et al. (2020a, p. 5) for
a discussion). In HDDL it is defined as follows: a new ac-
tion is introduced that is inserted in the method and placed
before every other task of the method’s subtasks. This new
action holds the precondition of the method. We will call
such actions technical actions.

In TO HTN planning, this fully specifies the position
where the precondition needs to hold. However, consider the
case of PO HTN planning. Here, the task decomposed by the
method might be partially ordered with respect to other tasks

and the subtasks might be interweaved. As a result, we can-
not exactly determine the position the precondition needs to
hold. When the state-features contained in the method’s pre-
condition are not static (i.e., might change over time), the
position where the precondition is checked might change ap-
plicability.

Since technical actions are not actually part of the so-
lution, planners will not return them. From a verification
perspective, this is problematic, a verifier needs to check
whether there exists a position where a technical action
is applicable. This is a main problem with the SAT-based
approach from related work (Behnke, Höller, and Biundo
2017), which needs to get the technical actions as input.

In our approach, handling this issue is not a problem: we
leave the preconditions and effects of technical actions un-
changed, i.e., they will not be affected by the encoding. As a
result, they can be inserted into plans of the compiled prob-
lems at arbitrary positions in line with the definition of HTN
decomposition. That is, if the plan π to verify has a length of
n, then our encoding makes sure that – provided plan π is in-
deed a valid solution to the original problem – a solution of
size at least n will be found (corresponding to π), but addi-
tional actions which encode the method preconditions may
be included as well at appropriate positions (one for each
applied method with a precondition). Note that this means
that there is no clear limit on the length of solutions (other
than its minimum). Since methods might replace an abstract
task by no other task, i.e., delete it, it is not clear how many
such empty methods might have been applied in the worst
case leading to a plan of a certain length.

3.2 Properties
Let v = (p, π) be a Plan Verification Problem and p′ the
encoding as given above.

Our encoding serves the purpose of deciding whether π
is a solution for p. This is being achieved provided that π is
a solution for p if and only if p′ is solvable, which we cap-
ture in the following two theorems. Note that this result (re-
stricted to methods without preconditions) follows as a spe-
cial case from Thm. 1 by Höller et al. (2018). That theorem
from the context of plan recognition states that the encod-
ing – the same one we deploy for plan verification – ensures
that the solutions of the encoded problem are exactly those
of the original problem that start with the enforced actions.
In the context of this earlier work, there might have been ad-
ditional actions after the prefix of enforced actions, namely
the remaining plan that should be recognized. In our case,
this part remains empty (modulo technical actions encoding
method preconditions).
Theorem 1. When π is a solution for p, then the compiled
problem p′ is solvable.

Proof Sketch. Since π is a solution to p, we know that there
is a sequence of method applications that transforms the ini-
tial task network tnI into a primitive task network tn , which
in turn allows π as executable linearization. Note that we can
assume that the solution was achieved by a progression plan-
ner, which applies methods and actions in a forward-fashion,
since such a progression-based solution exists if and only if
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any solution exists at all (Alford et al. 2012, Thm. 3). Thus,
we can assume that there is a sequence of method and action
applications ma that transforms tnI into π. That sequence
can be transformed into a corresponding (and potentially
longer) sequence in p′. For each action ai at position i in π
its corresponding encoding a′i will be executable in the solu-
tion π′ to p′, though the respective sequence of method and
action applications will be preceded by the method decom-
posing ca thus introducing that encoding of a′i. Furthermore,
every method m in ma will be applicable in the correspond-
ing method and action sequence ma′ leading to π′ in p′ as
well, though immediately preceded by the technical action
encoding the precondition of m.

Theorem 2. When π is no solution for p, then the compiled
problem p′ is unsolvable.

Proof Sketch. This direction is a bit easier to see than the
previous one, since the model of p′ is an extension of the
original one, i.e., it follows the exact same structure, but
each action has additional preconditions and thus makes the
problem more constrained. So if there is no solution in the
original model, there cannot be a solution in the encoded
one.

It was also shown that the transformation maintains most
structural properties of the problem (Höller et al. 2020b,
Sec. 6.1), i.e., tail-recursive, acyclic, and totally ordered
problems remain tail-recursive, acyclic, or totally ordered,
respectively. Since we deploy the same encoding we essen-
tially get the same property, though the restriction to a spe-
cific solution might lead to even more restrictive cases. E.g.,
the restriction to the model required to obtain the plan π to
verify might turn a problem without any restriction even into
a totally ordered acyclic problem. We still can directly con-
clude the following properties:

Corollary 1. If p is tail-recursive, p′ is tail-recursive. If p
is acyclic, p′ is acyclic. If p is totally ordered, p′ is totally
ordered.

4 Pruning the Model
The encoding makes wide parts of the original actions inap-
plicable. When realizing it on the lifted definition, this would
be detected by the grounding procedure (see e.g. (Ramoul
et al. 2017; Behnke et al. 2020b)), which would not generate
unreachable parts.

However, we realized our encoding on a fully grounded
model. For us, this had two main advantages: First, it sim-
plifies the implementation. Second, since our planning sys-
tem grounds the model before planning, we have the ground
model and do not need to ground twice. However, in order to
result in a small model, we need to prune unreachable parts.
We use the following two pruning methods, which are simi-
lar to what the PANDA grounder described by Behnke et al.
(2020b) would do in its grounding process.

4.1 Bottom-up Reachability
By construction, all actions not included in the enforced so-
lution contain the unreachable precondition ⊥, i.e., the only

actions that are (potentially) reachable are those in the en-
forced solution as well as the technical actions. Let AT be
the set of technical actions. We initialize our reachability
analysis with these actions: Nr = {a′i | a′i ∈ π} ∪AT .

We now want to determine the set of reachable methods
and abstract tasks. Since we know that certain actions are not
reachable, we know that any method which includes such
actions will never be part of any solution. Or, the other way
around, we know that only methods not including such ac-
tions will be part of a solution. For an abstract task c, we
know that it can only be part of a solution when there is at
least one method that decomposes c that might be part of a
solution. Based on these observations, we calculate the sets
of methods and abstract tasks that might be part of a solu-
tion.

Let TNN be the set of all task networks over the tasks N .
We define the relation R : TNN × 2N with

R = {((T ,≺, α), N ′) | ∀t ∈ T : α(t) ∈ N ′}
Let Nr ⊆ N be a set of reachable tasks. As discussed

above, the set of reachable methods based on this set is de-
fined as

Mr = {(c, tn) ∈M | (tn, Nr) ∈ R}
The overall reachability is then defined as follows:

function bottom-up(Nr)
Mr = ∅
while Nr changes do

Mr = {(c, tn) ∈M | (tn, Nr) ∈ R}
Nr = Nr ∪ {c | (c, tn) ∈Mr}

return (Nr,Mr)

As given above, this algorithm is started with Nr = {a′i |
a′i ∈ π} ∪ AT , i.e., the set containing the actions in the
enforced solution and all technical actions.

4.2 Top-down Reachability
The sets returned by the analysis given above might include
tasks and methods not reachable from the initial task net-
work. We therefore perform a second (top-down) analysis.
Let tnI = (TI ,≺I , αI) be the initial task network and Nr

and Mr the sets returned by the bottom-up analysis. We de-
termine the tasks and methods reachable top-down using the
following function.

function top-down(TI , αI , Nr,Mr)
M ′r = ∅
N ′r = {n | ∃i ∈ TI : αI(i) = n}
while N ′r changes do

N ′r = N ′r ∪ {n | ∃c ∈ N ′r, (c, (T ,≺, α)) ∈
Mr), i ∈ T : α(i) = n}
M ′r = {(c, tn) ∈Mr | c ∈ N ′r}

return (N ′r,M
′
r)

We perform a single pass of these two methods and output
the resulting (reduced) problem afterwards.
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5 Evaluation
We next describe the benchmark set and the systems in-
cluded in the evaluation. Then we discuss the results.

The experiments ran on Xeon Gold 6242 CPUs using one
core, a memory limit of 8 GB, and a time limit of 10 minutes.

5.1 Benchmark Set
We use a new set of benchmark problems that is based on the
models from the 2020 IPC. It contains 892 planning prob-
lems from 24 domains in TO planning and 224 instances
from 9 domains in PO planning. The solutions have been
created by 7 different planning systems for TO and by 4 sys-
tems for PO; namely by the final versions of the participants
of the IPC as well as by planners from the PANDA frame-
work (Höller et al. 2021). In total, this results in 10963 plan
verification instances in TO and 1077 in PO HTN planning.

Since plans and domains stem from a recent competition,
we consider it an interesting benchmark set with respect to
the included plans and the difficulty of the instances. How-
ever, there is one weakness that we want to address in future
work: Since the current set includes only instances from the
final planner versions (after the debugging process), it in-
cludes only very few instances that are incorrect plans, only
2 instances for TO and 1 for PO.

In related work, this problem was solved by using ran-
dom walks (Behnke, Höller, and Biundo 2017). However, it
is hard to create such instances with appropriate difficulty,
and we do not consider the resulting instances as interesting
as the positive ones given above. In future work, we want to
include instances from early planner versions from the IPC
(before debugging) to obtain a more realistic benchmark set.
However, this work is still in progress and here we present
the results from the benchmark set as described above.

5.2 Systems
We ground the models using the PANDA grounder (Behnke
et al. 2020b). Grounding time is included in the runtimes.
After transformation and pruning as given in Section 3 and
4, we output the same format as the PANDA grounder.

We use two planner configurations from the PANDA
framework (Höller et al. 2021) to solve the resulting HTN
planning problems:

• The progression search with the Relaxed Composition
(RC) heuristic (Höller et al. 2018, 2020c) and loop de-
tection (Höller and Behnke 2021).

• The SAT-based solver for TO (Behnke, Höller, and Bi-
undo 2018; Behnke 2021) and for PO (Behnke, Höller,
and Biundo 2019) HTN planning.

We compare our system against two systems from the lit-
erature, a SAT-based and a parsing-based approach.

SAT-based verification. The first system is based on a
compilation to propositional logic (Behnke, Höller, and Bi-
undo 2017). It supports both totally ordered and partially
ordered problems. However, it relies on an input plan that
contains all actions – including the technical actions given
above. This makes a comparison difficult. We addressed the

issue by removing all method preconditions from the in-
put model provided to this particular system. As a result,
no technical actions are introduced and the approach can be
applied. Since we remove constraints from the model, all so-
lutions to the original problem are also solutions to the new
model. However, the new model allows for more solutions.
Thus, the results obtained by this workflow might be incor-
rect. However, we argue that this does not make the solving
process harder and that we can fairly compare our runtimes
against this approach.

Parsing-based verification. The second approach from
the literature is based on parsing (Barták, Maillard, and Car-
doso 2018; Barták et al. 2020). In principle, it supports both
TO and PO models. However, while the TO version works
fine on our benchmark set, we where not able obtain a stable
run with the PO version and thus do not include the results
here. We know that this makes our evaluation preliminary
and will address the issue in future work.

5.3 Results
In the TO setting, our compilation approach reaches a cov-
erage of 99.4% with the progression search and 89.2% with
the SAT-based PANDA. The SAT-based verifier has a cover-
age of 8.3%, the parsing-based system one of 23.5%. When
comparing our two configurations, the SAT-based planner
solves 7 instances that the progression search does not solve.
For our compilation combined with the progression search
planner, only 67 plans of the corpus cannot be verified. In
43 of these cases, we already fail to ground the planning
problem (within the given memory/time limits). We cur-
rently do grounding without considering the plan to be veri-
fied. As such, the grounded model usually contains a signifi-
cant number of actions, tasks, and methods which cannot be
part of the compiled model. From the instances where the
grounding was successful, our compilation combined with
the progression search solves 99.8% of the instances.

Figure 1 visualizes the runtimes for the TO setting. The
curve on the left is the SAT-based approach from related
work, which has the worst performance, followed by the
parsing-based approach. Our translation combined with the
progression search performs best, followed by our transla-
tion combined with the SAT-based planner.

For the PO setting, our compilation reaches a coverage of
98.9% with the SAT-based planner and a coverage of 90.3%
with the progression search. The SAT-based verifier has a
coverage of 72.0%. We assume that the higher coverage is
caused by the fact that the plans in the PO setting are signif-
icantly shorter. For the PO instances, grounding never fails.

Table 1 shows some characteristic numbers in the TO set-
ting for the different domains. Our approach combined with
the progression search has a coverage of 100% in 18 of 24
domains. The parsing-based system has a higher coverage
in the Childsnack domain, where we have a coverage of
98.1% and the parsing-based system has 99.6%. Though the
parsing-based system also works on a grounded model, it
does not use an external grounder and can incorporate reach-
ability information into the grounding process. This seems
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Domain #Plans Verified Shortest Plan Length Runtime for Verified Pearson
SAT Parsing Comp unverified Min–Max Avg Median Min–Max Avg Median Corr-

SAT pro plan elation
Comppro

AssemblyHierarchical 193 24 102 193 193 – 4 – 256 31.1 14 0.07 – 0.76 0.2 0.11 0.812
Barman-BDI 423 79 33 396 423 – 10 – 1198 128.4 69 0.07 – 6.57 0.3 0.14 0.890
Blocksworld-GTOHP 160 2 5 142 160 – 21 – 6661 479.8 209.5 0.07 – 534.39 10.3 0.15 0.906
Blocksworld-HPDDL 172 0 5 143 170 4853 20 – 5732 461.1 163 0.07 – 542.21 15.8 0.19 0.914
Childsnack 529 92 527 516 519 750 50 – 2500 119.8 80 0.12 – 56.20 1.2 0.28 0.864
Depots 455 60 210 436 455 – 15 – 971 129.1 92 0.07 – 4.32 0.3 0.13 0.930
Elevator-Learned 2812 2 213 2700 2812 – 10 – 2165 225.1 200 0.06 – 6.71 0.3 0.21 0.940
Entertainment 159 111 159 159 159 – 24 – 128 71.7 64 0.08 – 4.33 1.6 0.58 0.199
Factories-simple 123 9 9 96 123 – 15 – 2968 623.7 251 0.07 – 17.38 1.8 0.14 0.928
Freecell-Learned 204 0 26 152 204 – 57 – 489 162.7 138.5 2.86 – 13.06 4.9 5.2 0.882
Hiking 565 0 156 565 565 – 26 – 174 70.8 72 0.17 – 45.97 2.4 0.97 0.641
Logistics-Learned 1108 0 9 683 1108 – 27 – 2813 413.1 370 0.07 – 14.55 0.6 0.37 0.919
Minecraft-Player 75 0 0 73 74 278 35 – 278 51.9 44 10.64 – 120.90 73.5 93.61 0.923
Minecraft-Regular 766 0 0 616 734 107 35 – 9947 253.8 135 0.12 – 207.75 11.6 1.455 0.326
Monroe-FO 248 0 176 248 248 – 3 – 96 41.5 39 3.48 – 3.94 3.7 3.66 0.334
Monroe-PO 217 0 63 217 217 – 6 – 91 45.1 45 3.43 – 3.91 3.7 3.67 0.390
Multiarm-Blocksworld 443 9 22 419 443 – 20 – 543 182.1 124 0.07 – 6.25 0.8 0.20 0.903
Robot 117 21 27 85 117 – 2 – 1725 272.4 37 0.06 – 59.25 4.2 0.08 0.914
Rover-GTOHP 509 22 172 397 509 – 16 – 2640 320.7 212 0.06 – 86.33 5.3 1.49 0.827
Satellite-GTOHP 296 9 84 199 296 – 12 – 1584 379.1 270 0.06 – 58.23 6.9 2.67 0.846
Snake 183 153 77 182 183 – 2 – 162 20.6 16 0.09 – 8.99 1.1 0.57 0.230
Towers 17 3 5 8 12 8191 1 – 131071 15419.1 511 0.07 – 141.21 14.6 0.195 0.684
Transport 695 65 239 664 678 382 8 – 5077 188.9 76 0.06 – 406.08 2.4 0.1 0.719
Woodworking 494 251 261 494 494 – 3 – 219 57.5 25 0.08 – 22.49 5.0 1.01 0.994

10963 912 2580 9783 10896 107 1 – 131071 239.2 119 0.06 – 542.21 3.2 0.29 0.273

Table 1: Characteristic numbers for the TO setting. From left to right: Name of the domain, followed by the number of verifica-
tion instances and coverage for all systems per domain. Length of the shortest plan that has not been solved by the progression
search, statistics regarding plan length and runtime. The last column gives the correlation between plan length and runtime.

Domain #Plans Verified Shortest Plan Length Runtime for Verified Pearson
SAT Comp unverified Min–Max Avg Median Min–Max Avg Median Corr-

pro SAT plan elation
CompSAT

Barman-BDI 56 37 46 44 90 10 – 1198 108.4 32 0.01 – 495.17 48.1 6.65 0.621
Monroe-Fully-Observable 129 7 129 129 – 9 – 61 24.9 24 6.85 – 105.65 29.3 14.82 0.656
Monroe-Partially-Observable 104 9 103 104 – 9 – 47 23.3 24 3.84 – 88.76 21.9 14.375 0.234
PCP 26 6 26 26 – 10 – 90 28.0 26 0.01 – 99.15 4.6 0.19 0.772
Rover 144 131 138 144 – 8 – 115 31.2 25 0.01 – 113.22 4.3 0.57 0.579
Satellite 246 246 246 246 – 5 – 28 13.5 13 0.00 – 0.11 0.0 0.02 0.677
Transport 183 150 96 183 – 8 – 69 27.2 28 0.01 – 139.83 2.1 0.23 0.321
UM-Translog 52 52 52 52 – 7 – 37 16.8 13 0.01 – 0.05 0.0 0.02 0.800
Woodworking 137 137 137 137 – 3 – 20 11.9 12 0.00 – 0.36 0.2 0.14 0.863

1077 775 973 1065 90 3 – 1198 25.7 18 0.00 – 495.17 8.8 0.19 0.667

Table 2: Characteristic numbers for the PO setting. From left to right: Name of the domain, followed by the number of verifica-
tion instances and coverage for all systems per domain. Length of the shortest plan that has not been solved by the progression
search, statistics regarding plan length and runtime. The last column gives the correlation between plan length and runtime.
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Figure 1: Solved instances in percent (on the y axis) relative to
the runtime (on the x axis) for the TO setting.
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Figure 2: Solved instances in percent (on the y axis) relative to
the runtime (on the x axis) for the PO setting.
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Figure 4: Runtime against length of the verified solution (be
aware of the log scale).

to be an advantage in the Childsnack domain. In all other
domains, our system has the highest coverage. For those do-
mains where not all instances have been solved, we included
the length of the shortest plan that could not be verified.

The next table (Table 1) gives statistics on plan length.
Regarding the medians, AssemblyHierarchical is the domain
with the shortest plans (14), and Towers the one with the
longest (511). The median over all domains is 119.

Next, the table gives information about the runtime
needed by our approach (combined with the progres-
sion search). The longest median runtime is needed for
Minecraft-Player. In 16 domains, the median is one second
or less. The last column gives the correlation between the
plan length and the runtime needed for verification.

Table 2 shows the same characteristics for the PO setting.
Notably the plans are much shorter (the average length is
smaller by nearly one order of magnitude). Our compilation
together with the SAT-based planner can verify all plans for
8 of the 9 domains with only Barman-BDI to have some
plans that could not be verified. Notably, these plans are
longer than almost all plans.

Figure 3 shows the runtime of our approach with the pro-
gression search in the TO setting compared to the parsing-
based system. It can be seen that in most instances solved by
both systems, our system is faster than the one from the lit-
erature. If it is not, the difference is about one second or less.
Figure 4 shows a comparison of runtime and plan length. It
can be seen that the runtime of equally long plans can be
very different, but also that longer plans are harder to verify.

Figure 2 visualizes the runtime in the PO setting. It
includes the compilation in combination with SAT-based
PANDA and progression search and the SAT-based verifier.
Like in the TO setting, our approach outperforms the SAT-
based verifier. The plateau in the curves of our approaches
are caused by the Monroe domain, where (especially us-
ing progression search) nearly the entire time is needed for
grounding and not for solving the ground problem.

6 Discussion & Conclusion
We have presented an approach to compile HTN plan verifi-
cation problems to HTN planning problems and have shown
that recent planning systems can solve the resulting prob-
lems for plans with reasonable length (i.e., for plan lengths
resulting from the recent IPC benchmarks/planners).

A possible criticism of a compilation-based approach
might be that one has to rely on the correctness of the applied
HTN planning system. So the question is why we rely more
on these systems than on the planning system that has gener-
ated the plan in the first place. Since HTN planning systems
are complex systems, we agree that these systems might also
be incorrect (though this might also be the case for verifiers,
of course). However the HTN planning systems used in our
evaluation return the decomposition steps performed to find
a plan as specified for the IPC. Therefore they provide a wit-
ness for the validity of their result (at least for cases where
they find a solution) that can be checked with the much sim-
pler systems based on these steps. So we can e.g. use the
verifier developed for the IPC to check our results.

For cases where the HTN planning system does not find a
solution, we cannot provide a meaningful explanation why
planning failed. However, please note that what we would
like to have here is a certificate of unsolvability of a planning
problem, which is at least in classical planning an active field
of research (see e.g. (Eriksson, Röger, and Helmert 2017;
Eriksson and Helmert 2020)), though we are not aware of
similar work in HTN planning.

As most important steps in future work we consider the
collection of unsolvable instances from early runs of the IPC
planners and the comparison to the parsing-based approach
in the setting of PO planning.

The performance of the progression-based system on the
PO benchmark set points to other lines of research. One
is to help the planners by propagating the implications of
the total order of the plan though the partial ordered HTN
model. Since this is another compilation, it would preserve
the property of needing no specialized solver. A second
promising direction is to actually adapt the planner and,
e.g., come up with specialized heuristics that take the addi-
tional information about the problem into account. Natural
candidates would be the landmark heuristic by Höller and

Proceedings of the 4th ICAPS Workshop on Hierarchical Planning (HPlan 2021)

14



Bercher (2021), which might benefit from the ordering con-
straints implied by the solutions, or the IP-based heuristic
introduced by Höller, Bercher, and Behnke (2020), where
it is straightforward to integrate the additional knowledge.
However, such systems would, of course, lack the elegance
of using standard planning systems.
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Abstract

We introduce a new method that can reduce the size of the
search tree in hybrid planning. Hybrid planning fuses task
insertion HTN planning with POCL planning. As planning is
a computationally difficult problem, the size of the search tree
can grow exponentially to the size of the problem.
We create so-called plan templates in a preprocessing step of
the domain. They can be used to replace an abstract task in a
partial plan. This task then no longer needs to be decomposed.
We provide empirical evidence in favor of this approach and
show that the use of plan templates can drastically reduce the
size of the search tree in hybrid planners. We use a PANDA-
like planner as a testbed and publicly available planning do-
mains to verify our claims.

1 Introduction
Planning is an important branch of artificial intelligence and
is widely used in practice. We focus on planning algorithms
that create action sequences to achieve a given goal in a
deterministic and fully observable world. One approach is
planning algorithms that create a search tree to find a solu-
tion to a problem (Ghallab, Nau, and Traverso 2004). This
is used in both classical planning and Hierarchical Task
Network (HTN) planning. In the latter, the nodes of the
tree contain partial plans with plan steps. In classical (non-
hierarchical) planning, the nodes store states. Unfortunately,
HTN planning is not flexible enough to be used with our
approach. We therefore use Hybrid planning (Schattenberg
and Biundo 2006; Biundo and Schattenberg 2001), which
extends HTN planning with partial order causal link (POCL)
techniques. It allows the insertion of new plan steps during
the planning process (task insertion).

A hybrid planning domain contains primitive and abstract
tasks. Primitive tasks correspond to operators known from
classical planning. Abstract tasks represent complex courses
of actions. They must be decomposed into more concrete
tasks using decomposition methods. In this process, an in-
stance of an abstract task is replaced by a partial plan, which
was stored in the decomposition method. This process is re-
peated until there are only plan steps with primitive tasks.
Each decomposition creates a new choice point in the search
tree. This process may introduce new abstract tasks into the
partial plan that must be decomposed again. This in turn cre-
ates new choice points in the search tree.

Our method is a domain analysis technique that prepro-
cesses a planning domain D (see Section 2). The goal is
to speed up the planning process. We create new decom-
position methods. They decompose an abstract task into a
single (newly generated) primitive task. Our innovation is
that such a decomposition method does not introduce new
plan steps with abstract tasks. The planning algorithm itself
is not changed. Before the execution of the planning algo-
rithm, the new domain DS ⊇ D is created, which contains
the new methods and primitive tasks. After the planning al-
gorithm has found a solution PDs , the plan steps with the
newly added primitive tasks are removed from it. They are
replaced by partial plans PRi

(τ) (called replacement plans)
that were generated during the preprocessing step. We call
this the replacement process (see Section 4). After that, the
solution PDs contains only primitive tasks found in the orig-
inal domain D. The replacement process uses neither search
nor further planning. A plan template is defined as the com-
bination of a method, a primitive task and a replacement
plan.
Our contribution is an algorithm that generates replacement
plans and placeholder tasks in a preprocessing step, which
are then used during planning to reduce the size of the search
tree. After a plan is found, the placeholder tasks are replaced
by the replacement plans.

In the following section, we first introduce hybrid plan-
ning. In the next section, we show how to create a plan
template with hybrid planning. Then, we describe the post-
processing step that is performed after the planning process.
At this point, the replacement plans are inserted into the so-
lution. We then present our results, which show the effec-
tiveness of our approach.

2 Hybrid Planning
Hybrid planning combines the concepts of Hierarchical Task
Network (HTN) planning and Partial-Order Causal-Link
(POCL) planning (Bercher, Alford, and Höller 2019; Bi-
undo and Schattenberg 2001). In our paper, hybrid planning
is with task insertion (TIHTN = HTN planning with task
insertion). The following definitions are taken in part from
Bercher, Keen, and Biundo (2014). Let V be the set of all
variables and C be the set of all constants.

A hybrid planning domain is a tuple D = (Ta, Tp,M).
Ta is the set of abstract tasks, Tp is the set of primitive tasks,
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and M is the set of all decomposition methods. All sets are
finite.

Both primitive and abstract tasks are tuples t(τ) =
〈prect(τ), eff t(τ)〉 consisting of a precondition and an ef-
fect. Each task has parameters τ . The preconditions and ef-
fects are conjunctions of literals and unequal variable con-
straints over the task parameters τ = (τ1, . . . , τn), τ i ∈
C ∪ V, i ∈ [1 . . . n]. A literal is an atom or its negation.
An atom is a predicate applied to a tuple of terms. A task
is grounded if all its variables are bound to constants. A un-
equal constraint can be between two variables or between
a variable and a constant. The preconditions and effects of
an abstract task have the semantics of Definition 7 from
Bercher et al. (2016). If it is clear from the context, we will
omit the parameters of a task.

Partial plans are tuples P = (PS ,≺,VC ,CL) consisting
of plan steps PS that are uniquely labeled tasks l : t(τ).
The set ≺ contains ordering constraints of the form (l, l′) ∈
PS×PS that induce a partial order on the planning steps in
PS. The set VC contains the unequal variable constraints
and the set CL contains the causal links. The CSP in VC
must be solvable. A causal link l : t(τ) →φ(τ ′) l

′ : t′(τ ′)
(shortened: l →φ l

′) links a precondition literal φ(τ ′) of the
plan step l′ : t′(τ ′) to a unifiable effect of l : t(τ). If there is
another plan step t′′(τ ′′) in the plan that has an effect υ(τ ′′)
that is unifiable with ¬φ(τ ′), and if the ordering constraints
allow l′′ to be ordered between l and l′, we call this a causal
threat. A precondition without a causal link is called open.

A partial plan P may contain abstract tasks. These must
be decomposed during the planning process using decom-
position methods. A method m = 〈t(τm), Pm〉 is a tu-
ple that maps an abstract task t(τm) to a partial plan
Pm = (PSm,≺m,VCm,CLm) that ”implements” the task
(Bercher et al. 2016, Def. 7). For the following definition, we
need the function unique(Pm, τ) = P ∗m, that replaces each
variable and label with a new name that does not appear in
any other partial plan. If a variable is used in the parameters
τ , it is not changed.
Definition 1 (Task Decomposition). Let l : ta(τ t) be a plan
step with an abstract task ta to be decomposed with m =
〈ta(τm), Pm〉. And let P ′m = (PS ′m,≺′m,VC ′m,CL′m) =
unique(Pm, τm)[τm,1/τ t,1, . . . , τm,n/τ t,n] be the partial
plan to be inserted. The set ≺X= {(l1, l2) ∈ PS ×
PS ′m|(l1, l) ∈≺} ∪ {(l1, l2) ∈ PS ′m × PS |(l, l2) ∈≺} de-
fines the new additional ordering constraints. The set CLX
contains the new causal links. The function fE (P, φ) returns
a task from the partial plan P that has an effect that is unifi-
able with φ. And the function fP(P, φ) returns a set of tasks,
each of which has a precondition that is unifiable with φ. The
two functions always find a return value, since our domain
must follow Definition 7 from Bercher et al. (2016).

CLX =
⋃

l′→φl′′∈CL





fE (P ′m, φ} →φ l
′′ l′ = l⋃

l∗∈fP(P ′m,φ)
l′ →φ l

∗ l′′ = l

l′ →φ l
′′ else

The new partial plan has the form P ′ = (PS ′,≺′
,VC ′,CL′). Where PS ′ = (PS \{l})∪PS ′m,≺′=≺ ∪ ≺′m
∪ ≺X , VC ′ = VC ∪VC ′m and CL′ = CLX ∪CL′m holds.

Task insertion is defined as the insertion of a new plan
step with a primitive task l : t(τ ′).
Definition 2 (Planning Process). A partial plan can be re-
fined by decomposing an abstract task, task insertion, adding
a variable constraint, adding an ordering constraint or adding
a causal link.

A hybrid planning problem is a combination of a do-
main D and an initial plan Pinit . Let L be the set of all
conjunctions of grounded literals and L+ be the set of all
conjunctions of positive grounded literals. As in standard
POCL planning, we encode the initial state Is ∈ L+ and
the goal description Gs ∈ L as two special primitive tasks
t0(τ) = 〈∅, Is〉, t∞(τ) = 〈Gs,∅〉 in the initial plan Pinit .
Definition 3 (Solution). A plan Psol is a solution if there
are no open preconditions, when all tasks are primitive and
grounded and when there are no causal threats (Bercher,
Keen, and Biundo 2014). This implies that all linearization
of Psol can be executed.

3 Plan Template Generation
In the preprocessing step, a plan template is created for
an abstract task ta(τa) ∈ Ta. This is done using a
modified hybrid planner. The template is a tuple PT =
〈PR(τ),mT (τ), pT (τ)〉 over the parameters τ (τ ⊇ τa).
We need to generate:
• a replacement plan PR(τ), which is a partial plan
• a primitive task pT (τ)
• and a method mT (τ) = 〈ta(τa), P ′〉 that allows the plan-

ner to select the primitive task. It holds P ′ = ({l′ :
pT (τ)}, ∅, ∅, ∅).

The creation process is then the following:
Task Selection: Select ta(τa) (see Section 3.2).
Problem Creation: The replacement plan PR(τ) is the so-
lution to the following hybrid planning problem in the orig-
inal domain D: The initial plan Pinit contains the abstract
task ta(τa) and the special tasks t0(τ0) and t∞(τ∞). The
initial state Is is equal to the preconditions of ta(τa) and
the goal description Gs is equal to the effects of ta(τa)
(if it has effects, otherwise the goal description is empty).
The plan steps are then l0 : t0, la : ta, l∞ : t∞. Thus,
Pinit = {{l0, la, k∞}, {(l0, la), (la, l∞)},∅,∅}. Note that
these tasks need not be grounded. The solution is also not
grounded. A replacement plan PR(τ) can and should con-
tain unbounded variables for maximum flexibility. Accord-
ing to our empirical tests, if the abstract task ta(τa) has ef-
fects, this improves the quality of the plan template.
Replacement Plan Creation: We use a modified hybrid
planner. The first modification of the planning process (see
Definition 2) is that we introduce a new (additional) refine-
ment type when we encounter an open precondition. Let
r ∈ prect(τ) be an open precondition of the plan step
l : t(τ). Then we add a new effect r to the task t0(τ0) and
create a causal link l0 →r l. Note that the parameters τ from
t that occur in r are added as new parameters to τ0.

The second change is that the planning problem is now an
optimization problem that attempts to minimize an objective
function fta , described in Section 3.1. A solution Psol must
satisfy the solution criteria from Definition 3 and it must be
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minimal with respect to fta . This is necessary to produce a
useful plan template (see Section 5).

The solution Psol = (PS sol ,≺sol ,VC sol ,CLsol) is then
the replacement plan PR(τ). The parameters τ contain all
variables from Psol .
Primitive Task Creation: From a solution Psol , a primi-
tive task pT (τ) = 〈precpT (τ), eff ppT

(τ)〉 is generated. The
precondition precpT (τ) of this task contains the effects of
the primitive task t0(τ) in Psol . The unequal variable con-
straints VC sol in Psol are also added as a precondition.
Thus, precpT (τ) = eff t0(τ) ∪VC sol holds.

The effects eff pT (τ) of the task consist of all effects that
would be in the goal state if we were to execute Psol . Thus,
we do not add effects that are undone during the execution
of the partial plan (since it is a solution, this is true in any
linearization). Thus, it holds:

eff T (τ) =
⋃

r∈eff p
T ′

(τ ′)

l′:pT ′∈PS sol





r if no other effect ¬r′
of a plan step l′′ exists
with (l′, l′′) ∈ ≺sol

∅ else

Unless all effects and variable constraints are added, it
would not be possible to replace the primitive task pT (τ)
with the replacement plan PR(τ) without using search (see
Section 4).
Method Creation: The decomposition method mT (τ) is
created according to its definition. The method mT (τ) and
the primitive task pT (τ) are added to the original planning
domain D.

3.1 Objective Function
The objective function evaluates a partial plan P . Let P =
(PS ,≺,VC ,CL) be the current partial plan at template gen-
eration. And let t0(τ) = 〈prect0(τ), eff t0(τ)〉 ∈ PS be
the initial task. The abstract task for which the template is
generated is called ta(τ). We define the following auxiliary
functions:
• ch(ta(τ), a): Returns 1 if the literal’s predicate occurs as

an effect in any decomposition of ta(τ). Otherwise, it re-
turns 0.

• stct(A): Given a set of atoms A, this function checks
whether the state constraints according to Gerevini and
Schubert (1998) are violated. It returns∞ if a violation is
found. Otherwise, it returns 0.

• P (a ∈ S(ta)): Probability that the predicate of a is avail-
able as a precondition for ta in a randomly selected prob-
lem in the domain D. This is approximated by solving
example domains. We count in all these solutions which
predicates occur in causal links. In doing so, we consider
only the links that go from a plan step that was not gen-
erated by a decomposition of ta(τ) to a plan step that
was generated by a decomposition of ta(τ). From these
counts, the probability of occurrence of each predicate is
calculated.

We tested two different objective functions fta(Popt , ta):
f1(P, ta) = |prect0(τ)|+ |PS |

fx2 (P, ta) =
|PS |+ ∑

a∈prect0 (τ)

+ch(ta(τ), a)x+

stct(prect0(τ))

Regarding fx2 we used the two variants f12 and fP (a∈S(ta))
2 .

Often there are multiple solutions where an objective func-
tion is minimal or near-minimal. If there are example prob-
lems, we evaluate the plan templates with them by solving
them. We then select the plan template that maximizes the
reduction of the search space. The others are discarded (see
Table 1, rover domain).

3.2 Selection of Abstract Tasks
To determine which abstract task is suitable for generat-
ing plan templates, we use the task decomposition graph
(Bercher, Keen, and Biundo 2014). For each task, we com-
pute the set of mandatory Mta and optional tasks Ota . The
mandatory tasks occur in every decomposition of a given ab-
stract task ta. The optional tasks occur in at least one decom-
position. Thus, the amount of mandatory tasks |Mta | relative
to the optional tasks gives us an indication of how much the
decompositions of an abstract task ta will differ from each
other. In our experiments, the higher the ratio |Mta |/|Ota |,
the more successful the generation of a plan template. Thus,
we select the abstract task with the highest ratio.

4 Replacement Process
The replacement process is a post-processing step performed
after the solution PDs = (PS Ds ,≺Ds ,VC Ds ,CLDs) has
been generated in Ds. The goal is then to generate a so-
lution PDs′ = (PS Ds′ ,≺Ds′ ,VC Ds′ ,CLDs′) that is valid
in the original domain D. For each plan step l : pT (τ t),
which uses a primitive task from a plan template PT (τ) =
〈PR(τ),mT (τ), pT (τ)〉, pT (τ) =

〈
precpT (τ), eff pT (τ)

〉
we perform the following steps:
Decomposition: The plan step l : pT (τ) is treated as
an abstract task and decomposed using the method m′ =
〈pT (τ),PR(τ)〉. Let P ′R = (PS ′R,≺′R,VC ′R,CL′R) =
unique(PR, τ)[τ1/τ t,1, . . . , τn/τ t,n] (see Definition 1).
Relinking: After the decomposition, the plan steps l0, l∞ ∈
PS ′R are removed and their causal links are relinked. Let
l0 →φ l′ be a casual link from l0. And let l′′ →φ l be a
causal link to l : pT . Then these two links are replaced by
l′′ →φ l

′. Similarly, a causal link of the form l′ →φ l∞ is
treated. Let l →φ l

′′ be a causal link with l : pT . Then these
two links are replaced again by l′ →φ l

′′. Note that because
of the way pT is defined, relinking is always possible. The
new partial plan after the decomposition is then PDs′ .
Removing Causal Threats: We remove causal threats in-
troduced by the decomposition step. Let ¬φ be an effect of
l′ ∈ PS Ds′ that threatens a causal link l′′ →φ l

∗. Let kp(l)
be a function that returns 1 if l ∈ PS ′R and 0 otherwise.

It cannot be kp(l′) = kp(l
′′) = kp(l

∗) because both the
replacement plan PR and the original plan PDs were solu-
tions (and thus without causal threats). It is also not pos-
sible that kp(l′′) 6= kp(l

∗) holds, because then the causal
link would have been created during the relinking step. And
since we have only connected pre-existing causal links to-
gether, there can therefore be no causal threat. It follows that
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satellite2 1o1s1m 2o1s2m 4o2s3m 3o2s2m
WO/W/I 66/17/3.88 11371/340/33.44 42140/29959/1.40 130791/1873/69.83

1o2s1m 2o1s1m 2o2s2m 3o1s3
WO/W/I 101/27/3.74 449/109/4.11 4472/119/37.57 > 300000/22312/> 12.44

3o1s1m 3o2s1m 3o2s3m 3o3s1
WO/W/I 5472/1209/4.52 15679/2773/5.64 > 300000/5483/54.71 29570/12945/2.28

3o3s2m 3o3s3m 3o1s2m
WO/W/I > 300000/2380/> 126.05 > 300000/986/> 304.25 136927/3368/40.65
woodworking 00 01 02 03
WO/W/I 4370/1738/2.51 67/67/1.00 79/79/1.00 374/224/1.67

04
WO/W/I 1930/1797/1.07
transport pfile01 pfile02 pfile03
WO/W/I 497/57/9.20 237244/63242/3.75 252274/127007/1.98
rover pfile1 pfile2 pfile3 pfile4
WO/W/I 2194/1006/2.18 130/3347/none 19603/8454/2.31 636/405/1.57
WD/WD2 4330/4786 612/86 21745/22290 1234/552

Table 1: Satellite Domain: Problems of the satellite domain solved without and with plan templates. It holds XoYsZm =
Xobs-Ysat-Zmod.hddl and WO/W/I = Solved without plan template / Solved with plan template / The improvement
factor.
Woodworking Domain: Problems of the woodworking domain. In this domain, an abstract task is on average decomposed into
two primitive tasks without plan template. Thus, there is not much room for improvement when the plan template is used.
Transport Domain: Problems of the transport domain.
Rover Domain: Problems of the rover domain solved without and with plan templates. The rover domain contains abstract tasks
without effects. However, due to the structure of the rover domain, a plan template could still be generated. We also added
measurements for 2 plan templates that were discarded because they were not as effective as the selected template. Note that
in the pfile02 example, the selected template performs very poorly and a discarded template reduces the number of search
nodes. It holds WD/WD2 = With Discarded Template / With Discarded Template 2.

domain satellite2 rover transport woodworking
States 182 31476 73 66
Generated 1 4 2 4
Used 1 1 2 1

Table 2: Number of search nodes needed to generate a
plan template. Note that adding multiple plan templates to
a domain can reduce performance because it increases the
branching factor during the planning process. In the trans-
port domain, we used 2 templates, which increases the num-
ber of states in the first example pfile01.

kp(l
′′) = kp(l

∗) and kp(l′) 6= kp(l
′′).

If kp(l′) = 0, then kp(l′′) = kp(l
∗) = 1. Then we can add

(l′, l′′) or (l∗, l′) to the ordering constraints≺Ds′ . This is al-
ways possible because ≺Ds cannot contain both (l′′, l′) and
(l′, l∗) after the decomposition step as defined by Definition
1. All ordering constraints (l1, l2) where kp(l1) 6= kp(l2)
holds were added during this step.

If kp(l′) = 1, it follows that kp(l′′) = kp(l
∗) = 0. If

adding (l′, l′′) or (l∗, l′) to the ordering constraints ≺Ds′ is
not possible, we must relink the causal link l′′ →φ l

∗. We
know that it must hold ¬φ /∈ eff pT (τ) because:
• all effects of a plan step in PR, except those removed by

another task, are added to eff pT (τ).
• if ¬φ ∈ eff pT (τ) then there would be no causal threat

because PDs is a solution.

It follows ¬φ /∈ eff pT (τ) and according to Section 3 (Prim-
itive Task Creation) there must be at least one more task
l∗∗ ∈ PS ′R with effect φ and (l′, l∗∗) ∈≺′R. We then add
l∗∗ →φ l

∗ and delete the old causal link.
Suppose the new link is again threatened by another

plan step l∗∗∗, kp(l∗∗∗) = 1 with an effect ¬φ. Then the
link is rewired again. This is repeated until the link is no
longer threatened. And there cannot be a plan step l∗∗∗ with
kp(l

∗∗∗) = 0 that threatens the link, because in that case it
would also threaten the original link, which is a contradic-
tion because PDs is a solution.

Theorem 1. The replacement process does not introduce
new flaws into the plan. The resulting plan is a solution.

Proof Sketch: We will show that the plan satisfies the solu-
tion criteria after the replacement process:
• No Open Preconditions: In the replacement plan PR(τ)

all preconditions are linked. And all other links that are
broken during the relinking step are reconnected.

• No Causal Threats: All causal threats were repaired in the
last step of the replacement process.

• Grounded: Each plan step is grounded because all pa-
rameters of PT (τ) are constants. The parameters also do
not violate any variable constraints in P ′R(τ). This is the
case because we have added all the variable constraints of
PR(τ) to the preconditions of the primitive task pT (τ).

�
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5 Results
We evaluated four sample domains (University Ulm 2019)
with plan templates generated with the fP (a∈S(ta))

2 function
(see Table 1). In each test domain, the algorithm selects n
abstract tasks for which a plan template is generated accord-
ing to Section 3.2. The number n of plan templates is deter-
mined by the user. We then compared the size of the search
tree when using the original domain D and when using the
domainDnew with the plan template. We counted the search
nodes in all our tests. These are shown in the tables.

We used a self-developed partial order planner with sup-
port for abstract tasks and TIHTN+POCL planning using
the hybrid heuristic h#F + hTC from Bercher, Keen, and
Biundo (2014). The heuristic works with grounded abstract
tasks, so we find a random grounding to apply this heuristic
to a lifted task. The planner is sound and complete. As a flaw
selection heuristic, we select the flaw that has the least num-
ber of distinct resolutions. This results in a low branching
factor.

The satellite2 domain showed the largest perfor-
mance gain. Here, the planner mostly (in 86% of the cases)
chose the template method during the planning process,
which reduced the number of states by a factor of up to
300. In the transport domain, only one plan template
was used. In the rover example, only one template was
also used. Since the rover example contains 9 different ab-
stract tasks, this reduced the usability of our plan template,
which only replaced one abstract task.

In all examples, we also tried to use more templates, but
this resulted in an increase in the number of search nodes.
Without task insertion the templates were not used by the
planner because in most of the cases the preconditions of
the primitive task pT could not be fulfilled.

We also tested the different evaluation functions from
Section 3.1. The f1 function did not provide any usable tem-
plates. Without evaluating the initial conditions added dur-
ing the planning process, the planning algorithm does not
know in which direction to optimize.

The functions f12 and fP (a∈S(ta))
2 provided usable results.

But only fP (a∈S(ta))
2 was successful in all sample domains

(see Table 2). The f12 function did not produce a usable
plan template in the transport domain. When we used
f
P (a∈S(ta))
2 , we did not use the same problems for the eval-

uation of the plan templates and performance measurements.
The performance gain is also supported by research about

plan merging. Since we solve a part of the plan indepen-
dently, the research results of Korf (1987) apply. He showed
that if we can solve n subgoals separately, this divides the
base and exponent of the complexity function by n. Thus,
theoretically, our approach can lead to an exponential reduc-
tion in the size of the search tree.

6 Related Work
Macros are also a technique to encapsulate sequences of op-
erators. Like plan templates, they have preconditions and ef-
fects like operators. This idea originated in the 1970s (Fikes
and Nilsson 1971). They are generated from plans in a pre-

processing step. These plans are solutions of example prob-
lems. In contrast to our approach, they do not use HTN do-
mains and therefore cannot use the additional information
they contain (abstract tasks, methods) (Chrpa, Vallati, and
McCluskey 2015).

7 Conclusions
We presented a new domain analysis method that can reduce
the size of the search tree. We showed that a drastic reduc-
tion in the size of the search tree is empirically possible. This
is even more effective when example problems are available
to guide the search when generating the plan templates. This
is because it improves the quality of the plan templates.

This method can be used wherever many problems need
to be solved in the same domain. It can quickly generate plan
templates. Further research is needed to determine which do-
main features make plan template generation successful.
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Abstract
The Pyhop planner, released in 2013, was a simple SHOP-style
planner written in Python. It was designed to be easily usable
as an embedded system in conventional applications such as
game programs. Although little effort was made to publicize
Pyhop, its simplicity, ease of use, and understandability led to
its use in a number of projects beyond its original intent, and
to publications by others.
GTPyhop (Goal-and-Task Pyhop) is an extended version of
Pyhop that can plan for both goals and tasks, using a com-
bination of SHOP-style task decomposition and GDP-style
goal decomposition. It provides a totally-ordered version of
Goal-Task-Network (GTN) planning without sharing and task
insertion. GTPyhop’s ability to represent and reason about
both goals and tasks provides a high degree of flexibility for
representing objectives in whichever form seems more natural
to the domain designer.

1 Introduction
Pyhop1 is a simple HTN planner written in Python, compris-
ing less than 150 lines of Python code. Its planning algorithm
is based on the one in SHOP (Nau et al. 1999), but it avoids
the need for a specific “planning” language by having the
task network and its methods written directly in Python. Py-
hop’s development was motivated by an observation that
application developers were often writing planning systems
themselves, rather than learning specialized AI planning lan-
guages (Nau 2013). Pyhop was written in hopes of providing
an HTN (Hierarchical Task Network) planner that could be
easily understood by non-AI practitioners.

Pyhop’s author made little effort to publicize it, but the
ease with which it could be understood and used has made it
useful for rapid prototyping, leading to its use in a number of
projects and publications by others (see Section 2).

This paper describes GTPyhop, which extends Pyhop to
plan for goals as well as tasks. It combines aspects of both
HTN planning as in Pyhop and SHOP, and HGN planning as
in GDP (Goal Decomposition Planner) (Shivashankar et al.
2012). In the terminology of (Alford et al. 2016b), it does a
totally-ordered version of GTN planning without sharing and
task insertion (there is an example at the end of Section 3).

GTPyhop’s source code is about four times as big as Py-
hop’s. It includes the following features:

1https://bitbucket.org/dananau/pyhop/src/master/

• Rather than a task list, GTPyhop has a to-do list that con-
tains zero or more actions, tasks, and goals. Like Pyhop, it
decomposes tasks using task methods; and like GDP, it de-
composes goals using goal methods. However, all methods
return to-do lists, rather than Pyhop’s task lists or GDP’s
goal lists (see example at end of Section 3). Thus a plan-
ning domain may use any arbitrary combination of task
decomposition and goal decomposition.

• Since HGN planning semantics corresponds readily to
classical goal semantics (Shivashankar et al. 2012), it can
be used to guarantee soundness. To enforce soundness,
when GTPyhop decomposes a goal g, it verifies whether
the resulting plan actually accomplishes g, and backtracks
if g is not accomplished. We anticipate that in future work,
this may be useful for purposes such as verification and
validation of domain descriptions.

• GTPyhop can load multiple planning domains into mem-
ory, and switch among them without having to restart
Python each time. GTPyhop also includes more documen-
tation than Pyhop, and additional debugging features.

The GTPyhop software distribution is available for down-
load under an open-source license.2 In addition to GTPyhop,
it includes several example domains, a test harness for run-
ning them, and a simple example of planning-and-acting inte-
gration: a version of the Run-Lazy-Lookahead actor (Ghallab,
Nau, and Traverso 2016) that uses GTPyhop as its planner.

The paper is organized as follows. We provide some con-
text for the original version of Pyhop (Section 2), describe
GTPyhop (Section 3), and briefly describe several research
projects in which GTPyhop is being used and extended (Sec-
tion 4). This is followed by discussions of related work (Sec-
tion 5), some of GTPyhop’s limitations (Section 6), and con-
cluding remarks (Section 7).

2 Why does Py Hop?
As we mentioned earlier, Pyhop is basically a simplified ver-
sion of SHOP that uses Python syntax. For example, actions
and methods are written directly as Python functions. Their
preconditions are Python if tests, and their effects are their
returned values.

2https://github.com/dananau/GTPyhop
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According to (Nau 2013), the original motivation for Py-
hop was a workshop on AI in games (Lucas et al. 2012) in
which many of the attendees were developing games that
incorporated AI planners as subsystems. The approach was
like the way AI planning has been used in other systems that
operate in dynamically changing environments:

• Approximate a part of the system’s objective as a planning
problem p, and develop a special-purpose planner for p.

• Use the planner as a subroutine, calling it repeatedly to
replan as the world changes. The planner operates online,
tightly integrated with the rest of the system.

Such integration is easier if the planner is small, easily un-
derstandable, and uses data structures compatible with those
used in the larger system in which the planner is embedded,
rather than requiring the data to be translated between two
different representation schemes. Pyhop was written as an
example of how to facilitate such integration.

The only efforts to publicize Pyhop were a brief announce-
ment on the SHOP web site3 and an invited workshop talk
(Nau 2013) with no published paper, just slides. Despite this,
a Google Scholar search4 shows 66 publications that refer to
Pyhop. In many of them, Pyhop is used for applications hav-
ing nothing to do with games. There also have been several
forks of Pyhop, e.g., (McGreggor 2014; Cheng et al. 2018),
and a re-implementation of Pyhop in C++ (Jacopin 2020).

3 GTPyhop
Figure 1 shows the GTPyhop planning algorithm. Like Pyhop,
it does a depth-first search with no loop detection (which
wouldn’t be useful here, see Alford et al. (2012)). Note that:

1. apply-action-and-continue and refine-task-and-continue
handle actions and tasks the same way that Pyhop does.

2. The way refine-goal-and-continue decomposes goals is
based on GDP (Shivashankar et al. 2012).

3. A mixture of task decomposition and goal decomposition
may be used throughout a planning domain. In the to-do
lists T and Tsub in lines (i), (ii), and (iii), each element may
be a task, goal, or action.

4. In line (iii), g is a goal, so GTPyhop needs to ensure that
Tsub achieves g. To do so, it appends to Tsub a dummy
action verify(g) that has g as a precondition. If the state
produced by Tsub satisfies g, the action has no effect. Oth-
erwise the action fails, making GTPyhop backtrack.

3.1 Representations and examples
We now describe the basic elements of a GTPyhop planning
domain, with examples from the GTN blocks-world domain
included with the GTPyhop software distribution.5

Domains are Python objects that contain all the elements of
a planning domain, e.g., gtpyhop.Domain(’blocks_gtn’).

3http://www.cs.umd.edu/projects/shop/
4https://scholar.google.com/scholar?hl=en&q=pyhop
5https://github.com/dananau/GTPyhop/tree/main/Examples/blocks_gtn

GTPyhop(s0, T ) (i)
return seek-plan(s0, T, [ ]) # base case for seek-plan

seek-plan(s, T, π)
# recursive DFS; π is the current partial solution
if T = [ ] then return π
t← the first element of T
T ′ ← the rest of T
case(t): # solve t, then plan for T ′

action: return apply-action-and-continue(s, t, T ′, π)
task: return refine-task-and-continue(s, t, T ′, π)
goal: return refine-goal-and-continue(s, t, T ′, π)

apply-action-and-continue(s, a, T ′, π)
if action a is applicable in state s:

return seek-plan(γ(s, a), T ′, π + [a])
else: return failure

refine-task-and-continue(s, τ, T ′, π)
M ← {task-methods that were declared relevant for τ}
for each m ∈M that is applicable in s:
Tsub ← decomp(s,m) (ii)
π ← seek-plan(s, Tsub + T ′, π)
if π 6= failure then return π

return failure

refine-goal-and-continue(s, g, T ′, π)
M ← {goal-methods that were declared relevant for g}
for each m ∈M that is applicable in s:
Tsub ← decomp(s,m) + [verify(g)] (iii)
π ← seek-plan(s, Tsub + T ′, π)
if π 6= failure then return π

return failure

Figure 1: GTPyhop pseudocode. The arguments are the initial
state s0 and a to-do list T (a list of actions, tasks, and goals).
GTPyhop returns a solution plan π, or failure if no solution
exists. γ(s, a) is the state produced by a, and decomp(s,m)
is the to-do list produced by m. “+” is concatenation of lists.

States are Python objects that contain collections of state-
variable bindings. When one first defines a state s, it is eas-
iest to write the variable bindings in dictionary form, as in
Figure 2. Afterward, one can use a Python version of state-
variable notation, e.g., s.pos[x] = ’hand’ in Figure 3.

Actions and methods are Python functions, with the current
state as the first argument. There isn’t a special reasoning
system (e.g., SHOP’s Horn-clause inference) to evaluate an
action’s or method’s preconditions. Instead, preconditions are
Python if tests. Similarly, an action’s effects and a method’s
to-do list are produced by ordinary Python computations.

For example, Figure 3 shows the blocks-world pickup ac-
tion. Its arguments are the current state s and the block x to
pick up. If the precondition (the first if test) is satisfied, the
action modifies the state to say that x is in the robot hand,
and returns the modified state. Otherwise the action returns
no value, which tells GTPyhop the action is inapplicable.

Tasks and task methods: Tasks are written as Python tuples.
For example, let (’take’,x) be the task of picking up a block
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sus_s0 = gtpyhop.State(’Sussman initial state’)
# Python dictionary notation for sus_s0.pos[’a’] = ’table’, etc.
sus_s0.pos = {’a’:’table’, ’b’:’table’, ’c’:’a’}
sus_s0.clear = {’a’:False, ’b’:True, ’c’:True}
sus_s0.holding = {’hand’:False}

sus_sg = gtpyhop.Multigoal(’Sussman goal’)
sus_sg.pos = {’a’:’b’, ’b’:’c’}

Figure 2: GTPyhop version of the Sussman anomaly (Ghal-
lab, Nau, and Traverso 2004, Section 4.4). In the initial state
sus_s0, blocks a and b are on the table, and block c is on a.
The goal sus_sg specifies that a is on b, and b is on c.

def pickup(s,x):
if s.pos[x] == ’table’ and s.clear[x] == True \

and s.holding[’hand’] == False:
s.pos[x] = ’hand’
s.clear[x] = False
s.holding[’hand’] = x
return s

gtpyhop.declare_actions(pickup)

Figure 3: The blocks-world pickup action. The arguments are
the current state s and a block x. If the precondition (the if
test) is satisfied, the action modifies s and returns it. The last
line declares pickup to be an action.

def m_take(s,x):
if s.clear[x] == True: # precondition

if s.pos[x] == ’table’: # decide what to do
return [(’pickup’, x)]

else: return [(’unstack’, x, s.pos[x])]

gtpyhop.declare_task_methods(’take’,m_take)

Figure 4: A task method. Its arguments are the current state
s and a block x. If the precondition is satisfied, it returns a
to-do list containing a pickup action if x is on the table, or
an unstack action if x is on a block. The last line declares
m_take to be relevant for all tasks of the form (take, ...).

x that may be either on the table or a block. Figure 4 shows
a method for this task. If there are several methods for the
same task, GTPyhop (like Pyhop and SHOP) will try them in
the order that they occur in the source file.
Goals can be represented in two ways. A unigoal is a triple
that represents a desired value for a state variable, e.g.,
(’pos’, ’a’, ’b’) is the goal of reaching any state s such that
s.pos[’a’]==’b’. A multigoal is a state-like object that rep-
resents a conjunction of unigoals, e.g., sus_sg in Figure 2
represents the conjunction of (’pos’, ’a’, ’b’) and (’pos’, ’b’, ’c’).
Goal methods include unigoal methods for decomposing
unigoals, and multigoal methods for decomposing multi-
goals. Figure 5 shows a multigoal method that imple-
ments a near-optimal block-stacking algorithm. For example,
find_plan(sus_s0,sus_sg) returns the following plan:

def m_moveblocks(s, mgoal):
for x in all_clear_blocks(s): # find a block to move

stat = status(x, s, mgoal)
if stat == ’move-to-block’:

where = mgoal.pos[x] # where to move it
return [(’take’,x), (’put’,x,where), mgoal] (iv)

elif stat == ’move-to-table’:
return [(’take’,x), (put,x,’table’), mgoal] (v)

for x in all_clear_blocks(s): # resolve deadlock
if status(x, s, mgoal) == ’waiting’ \

and s.pos[x] != ’table’:
return [(’take’,x), (’put’,x,’table’), mgoal] (vi)

return [ ] # no blocks need to be moved

gtpyhop.declare_multigoal_methods(m_moveblocks)

Figure 5: A multigoal method that implements the block-
stacking algorithm in (Gupta and Nau 1992): if a block needs
moving and is ready to move to its final location, then do so
and continue planning for mgoal; else if there’s a deadlock
then resolve it and continue planning for mgoal; else we’re
done. There are two helper functions: all_clear_blocks returns
a list of clear blocks, and status tells whether a block x needs
to be moved and whether it is ready to be moved.

[(’unstack’, ’c’, ’a’), (’putdown’, ’c’), (’pickup’, ’b’),
(’stack’, ’b’, ’c’), (’pickup’, ’a’), (’stack’, ’a’, ’b’)]

A GTN planning example. In lines (iv), (v), and (vi) of
Figure 5, the to-do lists contain two tasks and a multigoal.
GTPyhop (Figure 1) uses the right kind of method for each.

4 Example Usages
There are several research projects in which GTPyhop is
being used and extended. We briefly describe them below.

Bansod et al. (2021) describes an integrated system for
hierarchical planning and acting in dynamically changing
environments. An important component of this system is a
re-entrant planning algorithm based on GTPyhop.

A paper in preparation integrates GTPyhop with reinforce-
ment learning. The work uses the goal network provided by
GTPyhop to guide a curricula for multi-task learning. During
acting, it executes the goal network provided by GTPyhop.

GTPyhop is also being used in a research project to develop
temporal planning algorithms in multi-agent environments.
For this purpose, modifications are being made to support
communication among multiple agents, and representation
and reasoning about temporal constraints.

In our future work, we anticipate the possibility of using
goals for verification and validation of domain descriptions.

5 Related Work
The closest related theoretical work is (Alford et al. 2016b),
which related task networks and goal networks under various
semantics, including HTN, HGN, and GTN planning, task
(or goal) insertion, and sharing.

Several HTN planners introduced in the 1970s through
1990s are no longer available for comparison. One of the first
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was NOAH (Sacerdoti 1975), which was followed by Nonlin
(Tate 1977), the SIPE family (Wilkins 1990), O-Plan (Currie
and Tate 1991; Tate, Drabble, and Kirby 1994), PRS (Ingrand
et al. 1996; Meyers 2016), and UMCP (Erol 1996).

Many HTN planners provide a planner-specific language
in which to write the HTN methods. The SHOP planners
(Nau et al. 1999, 2003; Goldman and Kuter 2019) make use
of Lisp’s extensibility to define a Lisp-like language for this
purpose. Sohrabi et al. (2009) extended PDDL3 with HTNs
to support preferences and converted this extended PDDL3
format for a variant of SHOP2.

In JSHOP2 (Ilghami and Nau 2003), methods are written
in the same Lisp-like language, but JSHOP2 compiles them
to Java to perform the search. Similarly, the HyperTensioN
planner converts a planning model into the Ruby language
and was recently extended to support semantic attachments
for HTN (Magnaguagno and Meneguzzi 2020).

The totSAT planner (Behnke, Höller, and Biundo 2018)
converts totally-ordered HTN planning problems into a SAT
formula. PANDA (Höller et al. 2021) is a planner that in-
tegrates various approaches to hierarchical planning. Both
planners emphasize the importance of a common language
for problem definition and propose a Hierarchical Domain
Definition Language (HDDL) for it (Höller et al. 2020).

HDDL was also the input language for the recent Hierar-
chical Track of the International Planning Competition.6 A
full discussion of all planners in that competition is out of
scope for a short paper, but we highlight the winners SIADEX
(de la Asunción et al. 2005; Castillo et al. 2005) and Hyper-
TensioN (Magnaguagno and Meneguzzi 2020), which both
translated HDDL to their specific format.

IxTeT (Ghallab and Laruelle 1994) was a temporal HTN
planner which used a specialized language to encode its
methods. OpenPRS7 is a C implementation of PRS. ASPEN
(Fukunaga et al. 1997; Chien et al. 2000) is both a planner
and framework for planning in space applications; it uses a
planner-specific language for encoding plans. FAPE (Dvorák
et al. 2014; Bit-Monnot et al. 2020) is a recent planner that
supports a subset of the ANML language (Smith, Frank, and
Cushing 2008). A more recent HTN planner, SHPE (Menif,
Jacopin, and Cazenave 2014), has been specifically developed
for AI planning in video games. It uses a simplified variant
of ANML (Smith, Frank, and Cushing 2008) to encode prob-
lems that are compiled into C++ to perform search. The
Adversarial HTN Planner (Ontañón and Buro 2015) allows
for HTNs to be used in iterated environments such as Real
Time Strategy games; problems are encoded in a language
provided by the system. A variety of research has extended
this planner (e.g., (Lin et al. 2020; Sun et al. 2017)).

Like Pyhop and GTPyhop, there are several HTN planners
in which domains and problems are written in a conventional
programming language. The planner by Neufeld et al. (2018)
uses C++ for this purpose; its HTN primitives link with Be-
havior Trees, a common representation for computer game
agents. The planner by Soemers and Winands (2016) also
uses C++ to represent HTN problems; this planner introduced

6http://gki.informatik.uni-freiburg.de/competition/
7https://git.openrobots.org/projects/openprs

a mechanism to reuse the existing solution for faster replan-
ning. The UPOM planner introduced in (Patra et al. 2020)
uses Python to represent hierarchical operational models.

6 Limitations
One limitation involves the goal representation’s expressiv-
ity. A GTPyhop goal, like a state (see Figure 2), is a set
of state-variable bindings. The goal is the conjunction of
those bindings, without a way to represent more complicated
logical expressions. There probably are some workarounds,
but we have not yet considered this. In our work so far, this
limitation has not been a major problem.

In many HTN planners, a method or action may contain
free variables for which there are several possible instantia-
tions. When the planner creates instances of the method or
action, it may backtrack over these instantiations. In contrast,
in GTPyhop (like Pyhop) there is no notion of instantiating a
method. The method is a piece of Python code that GTPyhop
calls directly. The method may contain a variety of local vari-
ables, but it is up to the method’s author to specify how these
variables will acquire their values.

In HTN planners that use planner-specific languages, the
methods’ preconditions and subtasks are data structures that
the planner can reason about before deciding which methods
to use in a planning problem. This has enabled several recent
advances in HTN-planning search heuristics (Alford et al.
2016a) and other speedup techniques (Behnke, Höller, and
Biundo 2018). In contrast, GTPyhop does not know its meth-
ods’ preconditions and subtasks in advance, because each
method is a Python program that computes a list of subtasks
and subgoals that may depend on the current state (e.g., Fig-
ures 4 and 5). A potential way to circumvent this limitation
might be to evaluate the method, see what tasks, goals, and
actions it returns, and then use this information to provide
input to a search heuristic—but we have not tried to imple-
ment this to see how well it would work. For now, GTPyhop
(like Pyhop and SHOP) just does a depth-first search, trying
methods in the order that the domain author defined them.

7 Conclusions
Pyhop implemented a version of SHOP-style HTN planning
in which methods and actions were written directly in Python.
Despite a minimal amount of publicity and no publication, it
has been used in several systems that went beyond its original
intent of a simple planner for game systems.

GTPyhop extends Pyhop to provide a version of totally-
ordered Goal-Task-Network planning without sharing and
task insertion. GTPyhop also includes several other features,
as described in the introduction. We are working now to
extend GTPyhop to incorporate temporal and multi-agent
concerns. Section 4 has briefly described the directions that
this work is taking.
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Abstract

A major problem with integrating HTN planning and acting
is that, unless the HTN methods are very carefully written,
unexpected problems can occur when attempting to replan if
execution errors or other unexpected conditions occur dur-
ing acting. To overcome this problem, we present a re-entrant
HTN planning algorithm that can be restarted for replanning
purposes at the point where an execution error occurred, and
an HTN acting algorithm that can restart the HTN planner at
this point. We show through experiments that our algorithm
is an improvement over a widely used approach to planning
and control.

1 Introduction
HTN planners use descriptive models of actions tailored to
compute the next states in a state transition system effi-
ciently. In most cases1 they assume a world that is closed,
static, and deterministic. However, executing the plan in
open, dynamic, and nondeterministic environments, charac-
teristic of many practical problems, generally leads to fail-
ure. The planning domain will rarely be an entirely accurate
model of the actor’s environment, and execution of the plan
may fail due to (i) failure in execution of actions, (ii) occur-
rence of unexpected events, (iii) because the planning was
solved with incorrect or partial information.

Plans are needed for deliberative acting, but are not suf-
ficient for it (Pollack and Horty 1999). Many deliberative
acting approaches seek to combine the descriptive models
used by the planner with the operational models used by the
actor (Ingrand and Ghallab 2017). In contrast, others seek
to directly integrate planning and acting using operational
representations (Patra et al. 2019, 2020).

An early version of HTN planning was the Simple Hier-
archical Ordered Planner (SHOP) (Nau et al. 1999), and its
successors SHOP2 and SHOP3 (Nau et al. 2003; Goldman
and Kuter 2019). SHOP and its successors are written in the
LISP programming language, which limits its adoption.

Python is a much more widely adopted programming lan-
guage used by roboticists, game developers, machine learn-
ing engineers, and AI engineers. The Pyhop planner (Nau

1There are some exceptions, e.g., (Kuter and Nau 2005; Hogg,
Kuter, and Muñoz-Avila 2009; Chen and Bercher 2021).

2013a,b) adapts the SHOP planning algorithm so that meth-
ods and actions are written directly in Python. GTPyhop
(Nau et al. 2021), a recent extension to Pyhop, combines
both HTN planning and hierarchical goal-network (HGN)
planning (Shivashankar et al. 2012).

One difficulty with integrating acting with HTN planning
is responding to action failures at execution time. If one tries
to replan by calling the HTN planner with the new current
state but the same task as before, unfortunate results can oc-
cur (Section 5.1). In this paper we describe a way to over-
come that problem. Our primary contributions are:

1. We describe IPyHOP, a planner that can respond to plan-
execution failures by resuming the planning process at the
point where the failure occurred. IPyHOP’s planning al-
gorithm is based on GTPyhop (Nau et al. 2021), but with
the following key changes: it uses iteration rather than
recursion, and it preserves the hierarchy in the planning
solution and returns a solution task network rather than
a simple plan. Thus, if an unexpected problem occurs
during plan execution, the actor can call IPyHOP with a
pointer to the point in the task network where the execu-
tion failure occurred, and IPyHOP can resume planning
from that point onward.

2. Inspired by the RAE actor in (Ghallab, Nau, and Traverso
2016, Chapter 3), we provide a new acting algorithm,
Run-Lazy-Refineahead, that integrates efficiently with
IPyHOP. Run-Lazy-Refineahead calls IPyHOP to get a
solution task network and executes the actions in the task
network by sending them to its execution platform. If an
execution failure occurs, it gives IPyHOP a pointer to
where the failure occurred and requests replanning.

After discussing related work in Section 2, Section 3 ex-
plains our notation and briefly provides background on Py-
hop and GTPyhop. Section 4 explains the HTN planning in
IPyHOP. Section 5 explains the Run-Lazy-Lookahead and
Run-Lazy-Refineahead algorithms and how IPyHOP can be
used in integrated HTN planning and acting or deliberative
HTN acting. Sections 6 and 7 describe an experimental do-
main for HTN planning and experiments that compare Run-
Lazy-Lookahead and Run-Lazy-Refineahead algorithms for
deliberative HTN acting. Finally, Section 8 summarizes our
work and discusses limitations and some avenues for future
research.
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2 Related Work

AI planning. HTN planning is a widely adopted approach
to AI planning in the gaming industry (Neufeld et al. 2017).
One of the first HTN planners was Nets of Action Hierar-
chies (NOAH) (Sacerdoti 1975). Since then, numerous HTN
planners have been developed. Some of the best-known ones
are Nonlin (Tate 1977), System for Interactive Planning and
Execution (SIPE) and SIPE-2 (Wilkins 1990), Open Plan-
ning Architecture (O-Plan) (Currie and Tate 1991) and its
successor O-Plan2 (Tate, Drabble, and Kirby 1994), Uni-
versal Method Composition Planner (UMCP) (Erol 1996),
SHOP (Nau et al. 1999) and its successor SHOP2, and
SHOP3 (Nau et al. 2003; Goldman and Kuter 2019), and
SIADEX (Castillo et al. 2005). Additionally, there are var-
ious HTN planners like Simple Hierarchical Planning En-
gine (SHPE) (Menif, Jacopin, and Cazenave 2014) that are
specifically developed for AI planning in video games.

A wide body of literature also exists on Monte Carlo tree
search based planning in games. Monte Carlo tree search
refers to simulated execution (Feldman and Domshlak 2013,
2014), sampling outcomes of action models (Yoon, Fern,
and Givan 2007; Teichteil-Koenigsbuch, Infantes, and Kuter
2008), and hindsight optimization (Yoon et al. 2008).

Planning and acting. Musliner et al (2008) propose a way
to do online planning and acting. The old plan is executed
repeatedly in a loop while the planner synthesizes a new
plan (which the authors say can take a significant amount
of time), and the new plan is not installed until planning has
been finished. This way of repeated planning and acting is
similar to the Run-Concurrent-Lookahead algorithm defined
in (Ghallab, Nau, and Traverso 2016, Chapter 2).

Other similar algorithms, e.g., Run-Lookahead and Run-
Lazy-Lookahead, are also defined in (Ghallab, Nau, and
Traverso 2016, Chapter 2). Here Lookahead is any online
planning algorithm. Each time Run-Lookahead calls the
Lookahead planner, it performs only the first action of the
plan that Lookahead returned. This way of execution is ef-
fective, for example, in unpredictable or dynamic environ-
ments in which some of the states are likely to be differ-
ent from what the planner predicted. In contrast, Run-Lazy-
Lookahead executes each plan as far as possible, calling
Lookahead again only when the plan ends, or a plan sim-
ulator says that the plan will no longer work properly.

BDI Architectures. BDI (Belief-Desire-Intention) architec-
tures (De Silva and Padgham 2005; Bauters et al. 2014; Yao
et al. 2021; Sardina, De Silva, and Padgham 2006) have
some similarity to our work, but BDI systems are mostly
reactive. They differ from us with respect to their primitives
as well as their methods or plan-rules. In general, BDI sys-
tems will not replan, but they will select and execute an un-
tried method when failure occurs. Some BDI approaches,
e.g., (Yao et al. 2021) can also replan, but their agent model
is non-hierarchical. (Clement, Durfee, and Barrett 2007) in-
tegrates BDI architecture with hierarchical agent models for
temporal planning and coordination in multi-agent systems.

3 Background: Pyhop and GTPyhop
In this paper an HTN planning domain is defined as a pair
Σ = (O,M), and an HTN planning problem is defined as a
4-tuple P = (s0, w,O,M), where s0 is the initial state, w is
the inital task network,O is a set of operators, andM is a set
of HTN methods. For details, see (Bansod 2021). We assume
that primitive tasks can be directly executed by the execution
engine but non-primitive tasks need refinement before exe-
cution. We also assume that the planning domain is deter-
ministic and fully observable, but the execution environment
is nondeterministic—hence a solution plan returned by the
planner might not always work correctly at execution time.

GTPyhop (Nau et al. 2021) is a domain-independent Goal
Task Network (GTN) planning system written in Python.
GTPyhop is a progressive totally-ordered GTN planner i.e. it
plans for a sequence of tasks and goals in the same order that
they will later be executed. This behavior helps avoid some
of the goal-interaction issues that arise in other HTN plan-
ners, making the planning algorithm relatively simple. The
planning algorithm is sound and complete over a large class
of problems. Since GTPyhop knows the complete world-
state at each step of the planning process, it can use highly
expressive domain representations.

GTPyhop uses recursion for task and goal refinement.
Writing the algorithm as a recursive algorithm is intuitive,
and it follows the description of HTN planning algorithm
in many texts. The algorithm is also simple to implement,
and the recursion stack efficiently handles the refinement
and backtracking during task planning.

Like most HTN planners, GTPyhop has two limitations
that limit its ability to do effective replanning. First, the use
of recursion prevents the code from being re-entrant. If it
is necessary to replan because of an action failure, the only
alternative is to call GTPyhop again, which can lead to in-
correct results (see Section 5.1). Second, GTPyhop returns
a plan π, but not the refinement tree that produced π. In or-
der to replan if an action failure occurs, it is necessary for a
planner to know not only the action that failed but what tasks
it was trying to achieve at that point in the planning process.
That requires a copy of the refinement tree.

4 HTN Planning in IPyHOP
IPyHOP overcomes the limitations of GTPyhop in two
ways. First, it uses an iterative tree traversal procedure
for task refinement, with the refinement and backtracking
done by tree traversal algorithms. This supports consider-
ably more control over how the algorithm refines tasks. Sec-
ond, it accepts a (partial) task tree and returns the entire solu-
tion task network. This change supports adding hierarchical
knowledge for the replanning process. IPyHOP implements
GTN planning like GTPyhop. However, in this paper, we
discuss only the HTN planning functionality of IPyHOP.

Let u represent a grounded task node. Then, task(u) de-
fines the grounded task t = t(r1, ..., rk) corresponding to
u. refined(u) ∈ {true, false} represents if the node has been
refined. operator(u) represents the operator o ∈ O that is
relevant to task t if the task was primitive. visited(u) ∈
{true, false} represents if the node has been visited. state(u)
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Algorithm 1: HTN Planning in IPyHOP.
1 IPyHOP(s, w,O,M):
2 p← root(w)
3 while true do
4 u← first unrefined bfs successor(w, p)
5 if u = ∅ then
6 if p = root(w) then
7 break
8 else
9 p← parent(p)

10 continue
11 t← task(u)
12 if t is primitive then
13 o← operator(u) \\ here o ∈ O
14 s′ ← o(s, r1, ..., rk)
15 if s′ is valid then
16 s← s′

17 refined(u)← true
18 else
19 w, u← backtrack(w, u)
20 p← parent(u)
21 if t is non-primitive then
22 if visited(u) then
23 s← state(u)
24 else
25 visited(u)← true
26 state(u)← s
27 foreach m ∈ methods(u) where m ∈M do
28 t′ ← m(s, r1, ..., rk)
29 methods(u)← methods(u)\m
30 if t′is valid then
31 refined(u)← true
32 add nodes(u, t′)
33 p← u
34 break;

35 if not refined(u) then
36 w, u← backtrack(w, u)
37 p← parent(u)

38 return w

represents the state when the node was first visited. And
methods(u) represents the methods applicable to the task t
that haven’t been used for refinement of u, given that the
task is non-primitive.

Algorithm 1 is IPyHOP’s HTN planning algorithm. The
first unrefined bfs successor(w, p) returns the first unrefined
node found during a breadth first search in w, starting from
node p. In IPyHOP, backtrack(w, u) is a subroutine (see Al-
gorithm 2) that modifies the task network given that refine-
ment of node u failed. Wp is a list of nodes in a depth first
search pre-ordering in w, starting from node p. After back-
tracking, the non-primitive task node u′, the node refined
before the current task node u, is again marked for refine-
ment. The add nodes(u, t′) subroutine adds the sub-tasks t′
as nodes to the refined node u.

Algorithm 2: IPyHOP Backtracking.
1 backtrack(w, u):
2 p← parent(u)
3 Wp ← dfs preorder nodes(w, p)
4 foreach v ∈ reversed(Wp) do
5 refined(v)← false
6 if v is non-primitive then
7 Wv ← descendants(v)
8 w ← w\Wv

9 return w, v

10 w ← {root(w)}
11 return w, root(w)

5 Integrating IPyHOP with an Actor
As explained in Section 2, a popular way of integrating
a planner and an actor is by using algorithms like Run-
Lazy-Lookahead. In Section 5.1 we describe the Run-Lazy-
Lookahead algorithm and some of its features. We explain
its use in deliberative HTN acting and point to some of
its limitations. In Section 5.2 we describe the Run-Lazy-
Refineahead algorithm for deliberative HTN acting.

5.1 Where Run-Lazy-Lookahead Fails
The Run-Lazy-Lookahead algorithm, previously introduced
in Ghallab, Nau, & Traverso (Chapter 2 2016) is a delib-
erative acting algorithm. It executes each plan π as far as
possible, calling Lookahead again only when π ends or a
plan simulator says that π will no longer work properly.
This way of execution can help in environments where it
is computationally expensive to call Lookahead, and the ac-
tions in π are likely to produce the predicted outcomes. It
can also use a plan simulator, which may use the planner’s
prediction function γ or may do a more detailed computation
(e.g., a physics-based simulation, a Monte-Carlo simulation,
et cetera.) that would be too time-consuming for the planner
to use. The simulator should return failure if its simulation
indicates that π will not work correctly. For example, if it
finds that an action in π will have an unsatisfied precondi-
tion, or if the simulation indicates that the π will not achieve
the goal g when it is supposed to.

We can use IPyHOP as the Lookahead planner in Run-
Lazy-Lookahead to integrate HTN planning and acting.
However, this repeated planning and acting procedure does
not work well with HTN planners. The problem can be vi-
sualized with the following abstract example.
Example 1. Suppose we want to plan for a task network
consisting of two tasks t1 and t2. Let there be two methods
m1 t1 and m2 t1 that are applicable to t1. And two meth-
odsm1 t2 andm2 t2 that are applicable to t2. Let primitive
tasks be represented in syntax o〈i〉, ex. o1, o2 et cetera. Let
m1 t1 refine t1 into o1 and o2. Let m2 t1 refine t1 into o3,
o4, and o5. Let m1 t2 refine t2 into o4, o5 and o6. And let
m2 t2 refine t2 into o7 and o8. Also, for the sake of this ex-
ample assume that all tasks, methods, and the operators de-
fined here are grounded. These individual refinements can be
visualized in Figure 1. We will assume that all the methods
and operators have no pre-conditions and all are applicable
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Figure 1: Refinement of task t1 using m1 t1 and m2 t1.
And refinement of task t2 using m1 t2 and m2 t2. (Exam-
ple 1).
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Figure 2: Task network visualizations: (a) After first plan-
ning attempt. (b) Re-planning after failure in execution of
o6.

anytime in the planning process. Also, assume that the HTN
planner always prioritizes refinement of tasks using the first
method over second.

The solution tree that IPyHOP will return is visualized
by Figure 2(a). This solution implies that the plan repre-
sented in the form of a primitive task sequence will be
π = 〈o1, o2, o4, o5, o6〉. The primitive task sequence is
found by performing a Depth First Search (DFS) tree traver-
sal on the solution tree. Let us assume that while exe-
cuting this plan, o6 nondeterministically fails. We update
our model of o6 ∈ O (if required) used by the plan-
ner and perform re-planning again. The new solution tree
that IPyHOP will return is visualized by Figure 2(b). The
actor will now execute the plan π = 〈o1, o2, o7, o8〉.
This means that the action sequence executed by our ac-
tor is α = 〈o1, o2, o4, o5, o6, o1, o2, o7, o8〉, when in fact
it should have been α = 〈o1, o2, o4, o5, o6, o7, o8〉 for the
given scenario. This action sequence was executed because
we did re-planning for the completed task t1 along with the
failed task t2. �

Technically, it is possible to prevent degenerate execu-
tions like in Example 1 from happening by cleverly de-
signing methods that consider failures or having some flags

in the state that gets modified. However, as the complex-
ity of the task network increases, this approach quickly be-
comes infeasable. One of the most significant limitations of
HTN planning is the substantial domain engineering effort
required in writing HTN methods. Domain authoring is es-
pecially hard because the HTN formalism requires users to
provide methods to cover every possible scenario that the
agent could encounter. If the HTN planner finds itself in a
situation the user had not anticipated, it will behave unex-
pectedly or fail without returning a solution. Moreover, there
are many scenarios where it is impossible to account for such
occurrences while authoring the domain.

5.2 Run-Lazy-Refineahead
The problems with Run-Lazy-Lookahead occur due to in-
compatibilities between the definition of the Lookahead
planner and the definition of an HTN planner. The signature
of a Lookahead planner is (Σ, s, g), whereas the signature
of HTN planners is (s, w,O,M). However, the goal g and
task network w are notably different. The goal for a planner
might stay unchanged as the plan is executed. However, the
task network is constantly modified. Replacing the Looka-
head planner with IPyHOP leads to repeated planning for
some of the completed tasks from the original task network
w in a new state s′.

By visualizing the planning problem as a graph, however,
the solution seems apparent. We compute the modified task
network based on the location of the failure in the task net-
work. Then modify the task network again using the back-
track feature of the planner. And then resume the planning
process. During re-planning, the planner marks the nodes
that were refined because of this re-planning process.

The task network described in Example 1 is simplistic,
and finding the modified task network is trivial. We com-
pute the parent task node of the failed primitive task node
and only re-plan for the computed task node. However, for a
more complicated task network, this will not work. We will
have to come up with a more sophisticated algorithm. Let us
understand this with another example.

Example 2. We want to plan for a task network with
tasks t1, t2, and t3. Let us assume that the planner gener-
ated the solution task network represented in Figure 3(a).
We start implementing the primitive tasks in this solution
tree as encountered in a DFS tree traversal from the root
node. The primitive task sequence or the plan is π =
〈o1, o2, ..., o11, o12〉. However, while executing this plan,
assume that o7 nondeterministically fails. We need to find
the new task network our planner should use for re-planning.
Unlike the previous example, replanning just for the parent
task node t4 of the failed primitive task node o7 is incorrect
because the failure in executing o7 means that o11’s precon-
ditions will not be satisfied later in the plan. Thus, additional
replanning will be needed in order to prevent the entire plan
from failing.

In the above explained scenario, we should modify the so-
lution task network by removing refinements of all the tasks
that come after the failed node o7 in the Pre-ordered DFS
traversal. Alternatively, this could be done more efficiently
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Figure 3: (a) Solution task network after initial planning. (b)
Modified task network after failure in execution of o7. (c)
Modified task network after backtracking from o7 on the
modified task network in (b). (Example2).

using the Un-Refine-Post algorithm (Algorithm 3). At this
point, the modified task network should look like Figure
3(b). Now, we again modify this task network by backtrack-
ing on the failed node o7. At this point, the modified task
network should look like Figure 3(c). We update our model
of o7 ∈ O (if required) used by the planner and perform
re-planning again. The planner marks the nodes it refines in
this re-planning problem and returns another solution task
network for us to execute.

Note that during execution, we only execute the primi-
tive tasks that the planner marked during re-planning. We
compute the marked primitive tasks in this solution tree by
performing a DFS tree traversal from the root node. �

This way of repeated planning and acting leads to the for-
mulation of Algorithm 4, Run-Lazy-Refineahead.

Run-Lazy-Refineahead is a repeated planning and acting
algorithm for integrating HTN planning and acting. Here,
Refineahead is any online HTN planner that provides the

Algorithm 3: Un-Refine-Post. Algorithm used to
modify a task network w after failure at u.

1 Un-Refine-Post(w, u):
2 while true do
3 p← parent(u)
4 foreach v ∈ BFS Successors(p) s.t. v after u do
5 refined(v)← false
6 if v is non-primitive then
7 Wv ← descendants(v)
8 w ← w\Wv

9 u← p
10 if u = root(w) then
11 break
12 return w

Algorithm 4: Run-Lazy-Refineahead.
1 Run-Lazy-Refineahead(Σ, w):
2 s← abstraction of observed state ξ
3 while true do
4 w ← Refineahead(Σ, s, w)
5 if w = failure then
6 return failure
7 π ← marked primitive tasks in DFS(w)
8 a← first action in π
9 while π 6= 〈〉 and Simulate(Σ, s, π) 6= failure do

10 a← pop-first-action(π)
11 perform(a)
12 s← abstration of observed state ξ
13 if π 6= 〈〉 then
14 w ← Un-Refine-Post(w, a)
15 w, a← Backtrack(w, a)
16 else
17 break

solution as a refined task network and provides control over
its backtracking feature.

Run-Lazy-Refineahead executes each plan π as far as pos-
sible, calling Refineahead again only when π ends or a plan
simulator says that π will no longer work properly. This
way of execution can help in environments where it is com-
putationally expensive to call Refineahead, and the actions
in π are likely to produce the predicted outcomes. Simu-
late is the plan simulator, which may use the planner’s pre-
diction function γ or may do a more detailed computation
(e.g., a physics-based simulation, a Monte-Carlo simulation,
et cetera.) that would be too time-consuming for the planner
to use. Simulate should return failure if its simulation indi-
cates that π will not work correctly. For example, if it finds
that an action in π will have an unsatisfied precondition.

On failure in executing the plan, the tasks refined after
the failed task a in the task network w are un-refined us-
ing the Un-Refine-Post (Algorithm 3), and backtracking is
performed using the Backtrack algorithm of an HTN plan-
ner, e.g., Algorithm 2. The resulting task network obtained
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after these modifications is re-used for the next re-planning
process.

Intuitively, deliberative HTN acting implemented in Run-
Lazy-Refineahead is more efficient than in Run-Lazy-
Lookahead. Since for every re-planning, the Refineahead
needs to re-plan only for a subset of the task network, com-
pared to the entire task network for Lookahead, the plan-
ning time on average will be lower. Also, since the actions
corresponding to the tasks that have already been executed
are no longer planned for during re-planning, repetition of
already executed tasks will be minimized. Thus, Run-Lazy-
Refineahead will lead to executing action sequences with an
overall cost less than that by Run-Lazy-Lookahead.

6 Experimental Setup
We used the Robosub Domain (citation removed for blind
reviewing) for our experimental evaluation. The Robosub
Domain was derived from the RoboSub 2019 competition,2
where an autonomous underwater vehicle performs various
compulsory and optional tasks autonomously to score points
in the competition. A planning domain was written for the
refinement of these tasks. The planning domain consisted of
seventeen primitive task operators and twenty-one task re-
finement methods for refining ten non-primitive tasks.

We statistically analyzed the performance of Run-Lazy-
Lookahead and Run-Lazy-Refineahead approaches for de-
liberative HTN acting for the above-defined tasks. For the
RoboSub competition, we fixed the initial location of the
robot and a few other constraints. However, we varied the
location of various objects in the planning problem. The
initial task network always contains a single task named
competition-task that needs to be refined to complete all the
required tasks based on the competition deliverable.

The planning problem is solved using the IPyHOP plan-
ner, and the resulting plan is executed by a simple actor com-
municating with an execution platform. The execution envi-
ronment is nondeterministic, which leads to occasional fail-
ures in the execution of actions. The repeated planning and
acting is done using Run-Lazy-Lookahead and Run-Lazy-
Refineahead algorithms. The complete refinement and exe-
cution for one such planning problem is termed as a test case
x, where xi corresponds to the ith planning problem with the
initial state si, where si is the ith state in I . We repeat this
deliberative HTN acting process for all initial states. The ex-
ecution of all the test cases xi is known as an experiment, e,
where e = 〈x1, x2, ..., xj〉, where j = ‖I‖. We repeat the
experiment 11 times, i.e. E = 〈e1, e2, ..., e11〉.

We evaluate performance with three metrics:

• Total iterations taken: This metric calculates the total
number of iterations taken by the planner for a given test
case. Calculating iterations provides a good estimate of
the planner’s total planning time for a test case.

• Total action cost: This measures the total cost of an ac-
tion sequence for a given test case. Execution of smaller
action sequences will generally lead to lower total action
costs.
2https://robosub.org/programs/2019/

• Final state reward: This measures the reward obtained
based on the final state of the robot in a test case. This
is a good indicator of how well the competition task was
completed.

The raw data collected draw in each experiment e ∈
E described earlier was accumulated into a single dataset
Draw, where Draw = 〈d1, d2, ..., d11〉. Draw was post-
processed to calculate the required metrics and the results
were stored in a single numpy array representing the re-
sults dataset Dresults. Let the size of the dataset Dresults

be [‖e‖ × ‖a‖ × ‖x‖ × ‖m‖]. Here ‖e‖ = 11 is the number
of experiments performed, ‖a‖ = 2 is the number of deliber-
ative HTN acting algorithms being compared, ‖x‖ = 10000
is the number of test cases solved, and ‖m‖ = 3 is the num-
ber of metrics evaluated.

The Dresults dataset was processed further by doing a re-
duce mean operation across the zeroth axis of the dataset.
Thus the dataset Dexp mean of size [‖a‖ × ‖x‖ × ‖m‖] was
generated. Each element in the datasetDexp mean represents
the mean value of a metric for a given test case across ex-
periments. Since the value of a metric for a given test case
varies across experiments due to the non-determinism of the
execution environment, taking the mean across experiments
gives us a more reliable estimate of that metric for a given
test case. The metrics calculated in the dataset Dexp mean

are illustrated in Figures 4(a), 4(b), and 4(c).
It is possible that different numbers of failures occur with

each test case and a more fair assessment would compare
only situations with the same number of failures. Another
form of post-processing was done on Draw to generate the
Deqv dataset to balance this concern and these results are
presented in Figures 4(d), 4(e), and 4(f). The values repre-
sented by the Deqv dataset are less accurate since they only
use a single data point for a metric of a given test case.
Comparatively, the metric measurements from Dexp mean

are computed by performing a mean operation across 11 val-
ues for each metric in a test case. To improve the accuracy
of the metric measurements by Deqv dataset, we will need
to perform more experiments such that multiple data points
are available for each metric in the dataset.

7 Results and Discussion
Our results suggest that Run-Lazy-Refineahead is a better
algorithm for deliberative HTN acting compared to Run-
Lazy-Lookahead. In Figure 4(a), we show the values of the
metric - the total number of iterations taken by the planner,
for Run-Lazy-Lookahead (blue histogram) and Run-Lazy-
Refineahead (purple histogram). The relation of this metric
for the two deliberative acting algorithms is visualized in
Figure 4(d) as a scatter plot. Based on our results, we can
state that the Run-Lazy-Refineahead leads to the generation
of shorter and easily solvable re-planning problems. Also,
we can see in Table 2 that the average time spent in planning
during Run-Lazy-Refineahead is≈ 80% of the average time
spent in planning during Run-Lazy-Lookahead.

Figure 4(b) shows the values of the total-action-cost met-
ric, for Run-Lazy-Lookahead and Run-Lazy-Refineahead.
The relation of this metric for the two deliberative acting al-
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Figure 4: Results of three metrics: total iterations (left), action cost (middle), and final state reward (right). Each pair shows the
distribution visualized using histograms (top, using Dexp mean) and the relation visualized by fitting a line on the scatter plot
(bottom, using Deqv).

Metric Run-Lazy-Lookahead Run-Lazy-Refineahead
Mean SD Mean SD

Total iterations taken 364.470 34.178 290.592 32.639
Total action cost 165.928 16.002 115.478 1.339
Final State Reward 74.368 3.183 74.326 3.242

Table 1: Overview of results obtained using Dmean exp

Metric Refineahead /
Lookahead Mean

Best-fit line
Slope Y-intercept

Total iterations taken 0.796 0.639 58.296
Total action cost 0.682 0.044 108.282
Final State Reward 1.049 0.805 14.540

Table 2: Overview of results obtained using Deqv

gorithms is visualized in Figure 4(e). Thus, we can state that
the Run-Lazy-Refineahead leads to the execution of smaller
action sequences. In Table 2 we can see that the average cost
of executing action sequences generated from Run-Lazy-
Refineahead is ≈ 70% of the average cost of executing ac-
tion sequences generated from Run-Lazy-Lookahead.

Figure 4(c) shows show the values of the final-state-
reward metric, for Run-Lazy-Lookahead and Run-Lazy-
Refineahead. The relation of this metric for the two delib-
erative acting algorithms is shown in Figure 4(f). The results
show that the improvements mentioned earlier were realized
without sacrificing the average final state reward.

There is also a hidden burden associated with using the
Run-Lazy-Lookahead algorithm not portrayed by our ex-
periments. Authoring the domain for use in the Run-Lazy-
Lookahead algorithm requires accounting for numerous sce-
narios where failures would lead to repeated tasks, getting
stuck in infinite task loops, getting stuck in non-recoverable
states, et cetera. These problems can be addressed by clever
definitions of task methods and flags in the state. However, it
might not be possible to eliminate these undesirable behav-
iors. In more modest domain model definitions like ours, this
problem is not as pronounced. However, as the domain mod-
els get more and more comprehensive, this problem quickly
worsens. In Run-Lazy-Refineahead, however, the planner al-
ways resumes after backtracking on the node that caused the
failure. Thus, repetition of tasks and other unexpected be-
haviors are minimized.

For our experiments, every effort was made to make de-
liberative HTN acting using Run-Lazy-Lookahead as effi-
cient as possible. Optimizing the performance of the Run-
Lazy-Lookahead algorithm was our prime focus. The task
methods, operators, and state definition were designed pri-
marily for use in the Run-Lazy-Lookahead algorithm. Then
the same domain model definition and state definition were
used for the Run-Lazy-Refineahead algorithm. This reuse
of domain definition leads to the planner performing many
unnecessary constraint checks during task refinement re-
quired for Run-Lazy-Lookahead but are not required for
Run-Lazy-Refineahead. The domain authoring for use in
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Run-Lazy-Refineahead is much more straightforward and
concise. If the domain model definition was primarily de-
signed for Run-Lazy-Refineahead, the results would consid-
erably shift in its favor. The metrics would remain the same
for Run-Lazy-Refineahead but significantly worsen for the
Run-Lazy-Lookahead. However, even though the calculated
metrics would remain the same, the second execution would
be computationally faster than the first since simpler domain
model definitions are being used for task refinement process.

Hence we can comfortably state that Run-Lazy-
Refineahead is a better alternative to Run-Lazy-Lookahead
for deliberative HTN acting.

8 Summary and Future work
In this paper we have presented new algorithms for inte-
grated HTN planning and acting.

The first main contribution is an HTN planner, IPyHOP.
IPyHOP is an iterative tree traversal-based HTN planning
algorithm written in Python that provides extensive con-
trol over its task network refinement. Since the algorithm is
iteration-based, the task network refinement can be paused,
modified, and resumed at the user’s discretion. This level
of control makes it a great choice for planning in scenar-
ios where re-planning is required. Since IPyHOP uses the
Python programming language, authoring domain model
definitions does not require developers to learn specialized
programming languages. Instead, developers can write the
task methods as Python functions. Also, since it follows an
object-oriented design, it is effortless to integrate and debug
it with other computer programs. IPyHOP is envisioned to
make HTN planning accessible to a much broader audience
who were earlier reluctant to adopt it for their planning prob-
lems due to a lack of HTN planners in Python.

The second main contribution is a deliberative HTN ac-
tor, Run-Lazy-Refineahead. Run-Lazy-Refineahead is a re-
peated planning and acting algorithm specially designed for
deliberative HTN acting. We showed experimentally that it
performs better for deliberative HTN acting than Run-Lazy-
Lookahead, a popular acting-and-planning algorithm. Run-
Lazy-Refineahead uses the hierarchical nature of the refined
task network generated by HTN planners like IPyHOP to
develop smaller and smaller task refinement problems as the
execution proceeds. The improvement can be beneficial in
deliberative HTN acting in fast-moving dynamic worlds like
in games or in robotics scenarios.

We hope that the large community of roboticists and game
developers who program their systems in Python adopt IPy-
HOP, and Run-Lazy-Refineahead for HTN planning, and in-
tegrated planning and acting.

8.1 Limitations and Future Work
In some aspects, HTN planning is quite controversial.
The controversy lies in its requirement for well-conceived
and well-structured domain knowledge. Such knowledge is
likely to contain rich information and guidance on how to
solve a planning problem, thus encoding more of the solu-
tion than was envisioned for classical planning systems. This
structured and rich knowledge gives a primary advantage to

HTN planners in terms of speed and scalability when ap-
plied to real-world problems compared to their counterparts
in the classical planning world. However, this also makes
their performance depend on the users’ definition of suitable
domain-specific task methods.

IPyHOP faces many of the same challenges as other HTN
planners, namely:
• Domain engineering effort in writing methods: The HTN

formalism requires implementing methods to cover every
possible scenario that the agent could encounter. An HTN
planner trying to plan for an unanticipated state may fail
without returning a solution.

• Brittleness in open and dynamic environments: The pre-
vious problem is intensified in open, dynamic environ-
ments. Nondeterministic events or outcomes can result in
unanticipated situations, and HTN planners are not well
suited to work in open and dynamic environments.

• Effective domain-independent HTN planning heuristics:
Heuristics are crucial in guiding an algorithm toward
high-quality solutions. HTN planners often rely heavily
on the user-provided knowledge through the definition of
methods in providing the necessary guidance.

These limitations are important areas for future research on
improving IPyHOP.

In some aspects, the integration of HTN planning and act-
ing using Run-Lazy-Refineahead that we proposed here can
be interpreted as a simple HTN planner guided acting. Some
algorithms directly integrate a planner’s descriptive model
into a hierarchical actor to select refinement methods, while
others directly integrate planners that plan using operational
representations with the actor RAE e.g., (Patra et al. 2019,
2020). Combining a hierarchical planner and an actor using
this strategy leads to much more efficient and tighter integra-
tion. We believe a similar form of integration is also possi-
ble for HTN planners and HTN actors. An HTN planner like
IPyHOP could be directly integrated with an HTN actor like
RAE-lite, where the HTN actor would decide on the method
it uses for task refinement based on recommendation of the
HTN planner.

For hierarchical acting and planning, there are two main
ways to represent an objective: tasks and goals. A task is an
activity to be accomplished by an actor, while a goal is a fi-
nal state that should be reached. Depending on a domain’s
properties and requirements, users can choose between task-
based and goal-based approaches. Since IPyHOP is based on
GTPyhop (Nau et al. 2021), it supports both HTN and HGN
planning. However, we have not made any use of HGN plan-
ning in this paper. For future work, we intend to do exper-
imental evaluations of Run-Lazy-Refineahead versus Run-
Lazy-Lookahead on HGN versions of our test domains.
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Hogg, C.; Kuter, U.; and Muñoz-Avila, H. 2009. Learning
hierarchical task networks for nondeterministic planning do-
mains. In IJCAI, 1708–1714.
Ingrand, F.; and Ghallab, M. 2017. Deliberation for au-
tonomous robots: a survey. Artificial Intelligence 247: 10–
44.
Kuter, U.; and Nau, D. S. 2005. Using domain-configurable
search control for probabilistic planning. In AAAI, 1169–
1174.
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Abstract

Incorporating user requests into planning processes is a key
concept in developing flexible planning technologies. Such
systems may be required to change its planning model to
adapt to certain user requests. In this paper, we assume a user
provides a non-solution plan to a system and asks it to change
the planning model so that the plan becomes a solution. We
study the computational complexity of deciding whether such
changes exist in the context of Hierarchical Task Network
(HTN) planning. We prove that the problem is NP-complete
in general independent of what or how many changes are al-
lowed. We also identify several conditions which make the
problem tractable when they are satisfied.

1 Introduction
Incorporating humans into planning processes has emerged
as the frontier of the research in automatic planning for its
potential to accomplish highly complicated tasks, e.g., see
the works by Ferguson, Allen, and Miller (1996), Fergu-
son and Allen (1998), Ai-Chang et al. (2004), Bresina et al.
(2005), and Behnke et al. (2016). One major challenge faced
by the community in this direction is how to deal with the sit-
uation where a planning agent acts different from what a user
expects. For instance, an agent may find a planning problem
being unsolvable under its model whereas a user thinks it
is not the case, or an agent offers a plan which differs from
the one produced by a user himself/herself. The treatment
for this problem varies in the role a user plays in the plan-
ning process. An end user may be curious about why the sys-
tem’s behavior is not in line with his/her expectation, namely
looking for the explanations about the questions like “why
the problem is unsolvable?” and “why my plan is not a so-
lution?”. Such explanations might be formulated either via
transforming the planning model accordingly, e.g., changing
the initial state (Göbelbecker et al. 2010) and abstracting the
planning model to a certain level (Sreedharan, Srivastava,
and Kambhampati, 2018; 2019), or via adjusting the user’s
expectation, e.g., correcting the plan the user has in mind
(Barták et al. 2021a) and model reconciliation (Chakraborti
et al., 2017; 2020). On the other hand, if the human involved
is a domain writer, he/she may want to modify the planning
model so that the agent’s behavior can align with his/her an-
ticipation. To this end, providing modeling assistance to help
the domain writer comprehend the planning domain (Olz

et al. 2021) or identify possible modeling errors via model
transformations (Keren et al. 2017; Sreedharan et al. 2020)
is vital especially when the planning domain is rather com-
plicated.

In this paper, we re-visit a scenario we previously stud-
ied (Lin and Bercher 2021) where a user provides a plan
and claims that it is supposed to be a solution to some plan-
ning problem, though it is actually not, and transformations
on the planning model are required so that it will be. In our
earlier work, we investigated the computational complexity
of deciding whether such transformations can be found in
the framework of totally ordered HTN (TOHTN) planning,
which is a hierarchical approach of planning. Here we will
extend those results. Our contributions are twofold. 1) We
generalize our study to cover partially ordered HTN (PO-
HTN) planning. 2) We consider the scenario with regard to
different forms of the user input. For instance, a user could
provide a partially ordered or sequential potential solution
plan. The main results are summarized in Tab. 1

2 HTN Planning
We start with an introduction to the HTN formalism, which
is based on the one by Bercher, Alford, and Höller (2019)
and by Geier and Bercher (2011). We first give the definition
of task networks.

Definition 1. A task network tn is a tuple (T,≺, α) where
T is a set of task identifiers, ≺ ⊆ T × T specifies the partial
order defined over T , and α is a function that maps a task
identifier to a task name.

Definition 2. Two task networks tn = (T,≺, α) and tn′ =
(T ′,≺′, α′) are said to be isomorphic, written tn ∼= tn′, if
and only if there exists a one-to-one mapping ϕ : T → T ′

such that for all t ∈ T , α(t) = α′(ϕ(t)), and for all t1, t2 ∈
T , if (t1, t2) ∈ ≺, (ϕ(t1), ϕ(t2)) ∈ ≺′.

The task names in a task network are further categorized
as being primitive or compound. Primitive task names are
mapped to respective actions by a function δ. The action of
a primitive task name p, δ(p) = (prec, add, del), consists of
p’s precondition, add, and delete list, respectively. We also
write (prec(p), add(p), del(p)) for short. On the other hand,
a compound task name c can be refined (decomposed) into a
task network tn by some method m = (c, tn).
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Complexity Changes Theorems
Any Changes k Changes

NP-complete Action Cor. 2 Cor. 4
Order Thm. 2

(a) The complexity of changing planning models provided with
a PO task network that is supposed to be a solution.

Complexity Changes Theorems
Any Changes k Changes

NP-complete Action Cor. 6 Cor. 8
Order Thm. 6

P (Conditioned) Action Thm. 3 & 7 ?

(b) The complexity of changing planning models provided with
a PO/TO task network and a method sequence that is supposed
to generate it. Special cases with changing actions being al-
lowed that cover both totally ordered and partially ordered HTN
planning are in P. Whether similar cases exist for the bounded
version remains open (marked with ‘?’).

Complexity Changes Theorems
Any Changes k Changes

NP-complete Action Cor. 10 Cor. 13
Order Cor. 11

(c) The complexity of changing planning models provided with
an action sequence that is supposed to be a linearisation of a
non-given solution task network.

Table 1: The computational complexity of the problems
studied in this paper and the respective theorems (corollar-
ies). The column ‘Changes’ specifies the target that changes
are imposed to, i.e., changing actions or ordering constraints.
The column ‘Any Changes’ refers to the case where an ar-
bitrary number of changes can be applied, and ‘k Changes’
refers to the case where at most k changes can be applied.

Given a task network tn, the notations T (tn), ≺(tn), and
α(tn) refer to the task identifier set, the partial order, and the
identifier-name mapping function of tn, respectively. For a
method m, we use tn(m) to refer to its task network.

For convenience, we also define a restriction operation.
Definition 3. Let D and V be two arbitrary sets, R ⊆ D ×
D be a relation, f : D → V be a function and tn be a
task network. The restrictions of R and f to some set X are
defined by
• R|X = R ∩ (X ×X)
• f |X = f ∩ (X × V )
• tn|X = (T (tn) ∩X,≺(tn)|X , α(tn)|X)

A planning problem is then defined as follows.
Definition 4. An HTN planning problem P is a tuple
(D, tnI , sI) where D is called the domain of P . It is a tuple
(F,Np, Nc, δ,M) in which F is a finite set of facts, Np is a
finite set of primitive task names, Nc is a finite set of com-
pound task names with Nc∩Np = ∅, δ : Np → 2F×2F×2F
is a function that maps primitive task names to their actions,

and M is a set of (decomposition) methods. tnI is the initial
task network, and sI ∈ 2F is the initial state.

Definition 5. Let tn = (T,≺, α) be a task network, t ∈
T be a task identifier, c be a compound task name with
(t, c) ∈ α, and m = (c, tnm) be a method. We say m de-
composes tn into another task network tn′ = (T ′,≺′, α′),
written tn→m tn′, if and only if there exists a task network
tn′

m = (Tm,≺m, αm) with tn′
m
∼= tnm such that

• T ′ = (T\{t}) ∪ Tm.
• ≺′ = (≺∪≺m∪≺X)|T ′ , where≺X = {(t1, t2) | (t1, t) ∈
≺, t2 ∈ Tm} ∪ {(t2, t1) | (t, t1) ∈ ≺, t2 ∈ Tm}.

• α′ = (α\{(t, c)}) ∪ αm.
Additionally, a task network tn is decomposed into another
task network tn′ by a sequence of methods m = m1 · · ·mn

(n ∈ N0 with N0 = N ∪ {0}), written tn →∗
m tn′, if and

only if there exists a sequence of task networks tn0 · · · tnn

such that tn0 = tn, tnn = tn′, and for each 1 ≤ i ≤ n,
tni−1 →mi tni. Particularly, tn→∗

m tn if m is empty.

The solution criteria of a planning problem are then de-
fined as follows.

Definition 6. Let P = (D, tnI , sI) be an HTN planning
problem. A solution to P is a task network tn such that all
tasks in it are primitive, there exists a method sequence m
that decomposes tnI into it, i.e., tnI →∗

m tn, and it pos-
sesses a linearisation of the tasks that is executable in sI .

A linearisation t1 · · · tn of a (primitive) task network is
executable in a state s if there exists a sequence of states
s0 · · · sn such that s0 = s, and for each 1 ≤ i ≤ n, si−1 ⊆
prec(α(ti)) and si = (si−1\del(α(ti))) ∪ add(α(ti).)

The presented definition is standard in HTN planning as
proposed by Erol, Hendler, and Nau (1996) and used in sub-
sequent publications as well (Bercher, Alford, and Höller
2019). Other formalizations of hierarchical planning such
as hybrid planning (Bercher et al. 2016) which fuses HTN
planning with Partial Order Causal Link (POCL) where in
solution plans every linearization is executable. We will also
provide this alternative solution criterion.

Definition 7. Let P = (D, tnI , sI) be an HTN planning
problem. A solution to P is a task network tn such that all
tasks in it are primitive, there exists a method sequence that
decomposes tnI into tn, and every linearisation of tn is ex-
ecutable in sI .

The reason for including the more restricted solution cri-
terion is to be able to identify the cause of computational
hardness when model changes are required, though it is
somehow unrealistic. A more practical one would be ‘a
task network tn is a solution iff it can be obtained via de-
compositions, and by adding some ordering constraints, ev-
ery linearisation of it is executable’. However, the require-
ment of asking for additional ordering constraints has the
same algorithmic lower bound as deciding whether tn has
an executable linearisation, which itself is NP-hard already
(Nebel and Bäckström 1994; Erol, Hendler, and Nau 1996)1,
because if such extra ordering constraints can be found,

1See Bercher (2021) for a discussion and further related work.
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Criterion 2
(Def. 7)

decomposition
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Provided Provided

Figure 1: The scenarios where model change is involved.
Criterion 1 states that a task network is a solution iff it is a
refinement of tnI and there exists a linearisation of it which
is executable, whereas Criterion 2 requires that every lineari-
sation is executable.

tn must have an executable linearisation. Thus, if we de-
mand the solution criterion given by Def. 6 or the one re-
quiring extra ordering constraints, it would not be clear
where NP-hardness comes from. On the other hand, veri-
fying whether all linearizations of a task network are ex-
ecutable was shown to be tractable (Nebel and Bäckström
1994; Chapman 1987).2 Consequently, we list Def. 6 only
for the sake of completeness, and we will adhere to Def. 7
throughout the paper in order to eliminate the ambiguous
hardness source, unless otherwise indicated.

Fig. 1 previews what scenarios will be considered next.
In the right branch we assume that a partially ordered plan
is provided that is supposed to be a solution. Although we
provide two solution criteria with regard to this case, we will
primary focus on the one given by Def. 7. In the left branch
we consider the case where an action sequence is provided
rather than a partially ordered plan.

3 Changing the Model
For the purpose of changing planning models, we shall first
define the allowed changes. We have introduced several
model-change operations in the context of totally ordered
HTN planning in our earlier work (Lin and Bercher 2021),
which is a restricted version of HTN planning where the
tasks in each task network in a planning model are totally
ordered. For such a task network tn, its definition can be
simplified by regarding it as a sequence of task names, i.e.,
tn ∈ (Np∪Nc)

∗. We first reproduce the definitions of those

2Nebel and Baeckstroem did not show this in the context of
HTN planning, but for unconditional event systems. These, how-
ever, perfectly coincide with a partially ordered set of actions such
as in primitive task networks. A more detailed discussion can be
found in the work by Bercher and Olz (2020).

operations since we will require them later on.
Definition 8. Let p be a primitive task name, m = (c, tn)
with tn = t1 · · · tn be a method, and 1 ≤ i ≤ n + 1 be
an integer. The operation ACT+

TO is a function that takes as
inputs p, m, and i and outputs a new method m′ = (c, tn′)
such that tn′ = tn1 p tn2 where tn1 = t1 · · · ti−1 and tn2 =
ti · · · tn.
Definition 9. Let m = (c, tn) be a method where tn =
tn1 p tn2 with tn1 = t1 · · · ti−1 and tn2 = ti+1 · · · tn be
two sequences of task names, and p be a primitive task name.
The operation ACT−

TO is a function that takes as inputs m
and i and outputs a new method m′ = (c, tn′) such that
tn′ = tn1 tn2.

We use CTO to refer to the set of changes allowed in to-
tally ordered HTN planning. On top of those operations, we
define several new operations that are targeted at partially
ordered HTN planning problems. We first consider the oper-
ations that change the ordering constraints in a method.
Definition 10. Let m = (c, tn) with tn = (T,≺, α) be a
method, and t1, t2 ∈ T be two task identifiers. The operation
ORD+ is a function that takes as inputs m and (t1, t2) and
outputs a new method m′ = (c, tn′) with tn′ = (T ′,≺′, α′)
such that T ′ = T , ≺′ = (≺ ∪ {(t1, t2)})+3, and α′ = α.
Definition 11. Let m = (c, tn) with tn = (T,≺, α) be a
method, and t1, t2 ∈ T be two task identifiers with (t1, t2) ∈
≺. The operation ORD− is a function that takes as inputs m
and (t1, t2) and outputs a new method m′ = (c, tn′) with
tn′ = (T ′,≺′, α′) such that T ′ = T , ≺′ = ≺\{(t1, t2)},
and α′ = α.

We then consider the operations that change the actions
(primitive tasks) in a method. We start with the operation
which adds an action to a method’s task network.
Definition 12. Let m = (c, tn) with tn = (T,≺, α) be
a method, TA = {t1, · · · , tn} and TB = {t′1, · · · t′m} with
n,m ∈ N and TA∩TB = ∅ be two subsets of T , and p ∈ Np

be a primitive task name. The operation ACT+
PO is a function

that takes as inputs m, TA, TB , and p and outputs a new
method m′ = (c, tn′) with tn′ = (T ′,≺′, α′) such that T ′ =
T ∪{t} with t /∈ T be a new task identifier,≺′ = (≺∪≺A∪
≺B)

+ with ≺A =
⋃n

i=1{(ti, t)} and ≺B =
⋃m

i=1{(t, t′i)},
and α′ = α ∪ {(t, p)}.

Informally, the above operation inserts a primitive task to
a position in tn that is after the tasks listed in TA and before
those in TB . For instance, a new task is placed before all
tasks in tn if TA = ∅ and TB = T . On the other hand,
when removing an action from a method, we should delete
all ordering constraints associated with this action.
Definition 13. Let m = (c, tn) with tn = (T,≺, α) be a
method, and t ∈ T be a task identifier. The operation ACT−

PO
is a function that takes as inputs m and t and outputs a new
method m′ = (c, tn′) with tn′ = tn|T\{t}.

Similarly, we use CPO to refer to the set of change oper-
ations allowed in a partial order setting. Given two meth-
ods m, m′ and a sequence of model-change operations

3The superscript + refers to the transitive closure.
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X = x1(m1, ∗) · · ·xn(mn, ∗) where for each 1 ≤ i ≤
n, xi ∈ CTO if a total order setting is given, otherwise
xi ∈ CPO, mi is a method, and ∗ refers to the remain-
ing parameters in the operation. We write m →∗

X m′ if
m = m1, m′ = xn(mn, ∗), and for each 1 ≤ i ≤ n − 1,
mi+1 = xi(mi, ∗).
Definition 14. Let P = (D, tnI , sI) with D =
(F,Np, Nc, δ,M) and M = {m1, · · · ,mn} be a planning
problem, and X be a sequence of method-changes. A prob-
lem P ′ = (D′, tnI , sI) with D′ = (F,Np, Nc, δ,M

′) and
M ′ = {m′

1, · · · ,m′
n} is obtained from P by applying X ,

written P →∗
X P ′ if and only if for each 1 ≤ i ≤ n, either

m′
i = mi or there exists a sub-sequence Xi of X such that

mi →∗
Xi

m′
i.

The definition is applied to both partially ordered and to-
tally ordered HTN planning, and it implies that the method
set in P maintains a one-to-one mapping to that in P ′. We
use βX : M → M ′ to denote this mapping, where for each
method mi with 1 ≤ i ≤ n, βX (mi) = m′

i.
Now we have defined all necessary model changes, we

can move on to investigate the computational complexity of
checking whether a change sequence exists that turns the
given task network into a solution.

4 Complexity of Correcting the Model –
Given Just A Task Network

We start by considering the question asking whether there
exists a sequence of model-change operations with arbitrary
length that turns a given partially ordered task network into
a solution. We formulate the decision problem as follows,
which generalizes the old one we gave for totally ordered
HTN planning.

Definition 15. Let X ⊆ {ACT+
SET, ACT−

SET, ORD+, ORD−}
and |X| ≥ 1, SET ∈ {TO, PO}, P be a planning problem,
and tn be a task network. The problem FIXMETHSX

SET with
SET specifying whether it is in a TO or a PO setting is to
decide whether there is a sequence of change operations X
consisting of the operations restricted by X such that P →∗

X
P ′, and tn is a solution to P ′.

The hardness of the problem in a PO setting can be imme-
diately obtained under the solution criterion given by Def. 6
(because deciding whether a partially ordered task network
has an executable linearisation is already NP-hard). Thus,
the question of interest is whether NP-hardness (henceforth
NP-completeness) holds when we employ the solution crite-
rion given by Def. 7. For this, we first consult our old result
(Lin and Bercher 2021) that the problem is NP-complete in
totally ordered HTN planning.

Proposition 1 (Lin and Bercher (2021, Thm. 1–4)). Given
an X ⊆ {ACT+

TO, ACT−
TO} and |X| ≥ 1, FIXMETHSX

TO is
NP-complete.

This proposition holds for both solution criteria given by
Def. 6 and 7 because every task network in totally ordered
HTN planning has only one linearisation. Since totally or-
dered HTN planning is a restricted version of partially or-
dered HTN planning, the hardness of the variants in the con-

text of partially ordered HTN planning where only changing
actions is allowed follows directly.

Corollary 1. FIXMETHSX
PO with X ⊆ {ACT+

PO, ACT−
PO}

and |X| ≥ 1 is NP-hard.

Next we show that these variants are in NP as well. To
this end, we first prove that there always exists a polynomial
upper bound of the length of the shortest change sequence
that turns the given task network into a solution independent
of what changes are allowed.

Lemma 1. Let P and tn be a planning problem and a task
network given by an instance of the FIXMETHSX

PO problem
with X ⊆ {ACT+

PO, ACT−
PO, ORD+, ORD−} and X ≥ 1.

There must exist a change sequence X consisting of changes
restricted by X such that P →∗

X P ′, tn is a solution to P ′,
and |X | ≤ (

∑
(c,tnm)∈M |T (tnm)|+|≺(tnm)|)+|T (tn)|+

|≺(tn)| provided that any change sequence exists that meets
the restriction of X and turns tn into a solution.

Proof. We first consider the variant where all changes are
allowed. We need to show that the upper bound presented
is sufficient for the shortest change sequence. In such a
change sequence, the number of action deletions must not
exceed the total number of tasks in all methods, which is∑

(c,tnm)∈M |T (tnm)|, otherwise, there must exist some ac-
tion that is added first and removed afterward, and thus a
shorter change sequence exists. For the same reason, the
number of ordering constraint deletions is smaller or equal
to

∑
(c,tnm)∈M |≺(tnm)|, which is the total number of or-

dering constraints in all methods. On the other hand, the
number of action insertions in the shortest change sequence
cannot exceed the total number of tasks in tn (i.e., |T (tn)|),
otherwise, some inserted actions must be deleted, and thus
a shorter change sequence exists. The same argument holds
for the number of ordering constraint insertions, which can-
not exceed |≺(tn)|. Thus, the presented upper bound holds.

For the remaining variants, the length of the shortest
change sequence is strictly smaller than the presented up-
per bound because some changes are forbidden, e.g., if
only adding actions is allowed, the length of the shortest
change sequence must not exceed |T (tn)|. Thereby, the up-
per bound holds for all variants.

The presented lemma not only reveals the NP-
membership of the variants where only changing actions is
allowed, but the fact that all classes are in NP.

Theorem 1. Let X ⊆ {ACT+
PO, ACT−

PO, ORD+, ORD−} and
X ≥ 1. FIXMETHSX

PO is in NP.

Proof. For each X ⊆ {ACT+
PO, ACT−

PO, ORD+, ORD−} and
X ≥ 1, we can guess a change sequence of length smaller
or equal to the upper bound stated in Lem. 1 which turns
P into P ′ and consists of operations restricted by X . This
step can be done in poly-time because the change sequence
is bounded in length by a polynomial. Afterward, we ver-
ify whether every linearisation of tn is executable, which
can be accomplished in polynomial time as well (Nebel and
Bäckström 1994; Chapman 1987). Lastly, we employ the
non-deterministic VERIFYTN algorithm (Behnke, Höller,
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and Biundo 2015) to check whether tnI can be decomposed
into tn under the modified domain. Although the VERI-
FYTN algorithm is developed under the solution criterion
given by Def. 6, it can be employed here because it is ex-
ploited in the sense that we do not need to consider the exe-
cutability of tn (which has been verified previously). Thus,
FIXMETHSX

PO is in NP.

The NP-completeness of the variants where only chang-
ing actions in methods is allowed is thus a direct corollary
of the previous results.

Corollary 2. FIXMETHSX
PO with X ⊆ {ACT+

PO, ACT−
PO}

and |X| ≥ 1 is NP-complete.

What is new compared to totally ordered HTN planning
are the operations that change ordering constraints in meth-
ods. It turns out that deciding whether we can transform
a plan into a solution via changing ordering constraints in
methods is NP-complete as well.

Theorem 2. FIXMETHSORD+

PO is NP-complete.

Proof. Membership has been given by Thm. 1. For hard-
ness, we reduce from the independent set problem. The in-
dependent set problem is that given a graph G = (V,E)
and an integer k ∈ N, we want to decide whether there
is a subset V ′ ⊆ V such that |V ′| = k, and there are
no two vertices in V ′ which are connected to each other
by an edge in E. Suppose k ∈ N and G = (V,E) with
V = {v1, · · · vn} and E = {e1, · · · , em} are the integer
and the graph given by an instance of the independent set
problem. The key idea of the reduction is constructing a
planning problem P whose initial task network tnI encodes
the structure of G. To this end, we construct one compound
task vci (1 ≤ i ≤ n) for each vertex vi and one primitive
task epi (1 ≤ i ≤ m) for each edge ei. The initial task
network tnI consists of two parts as shown by Fig. 2. The
first part contains the unordered tasks vc1, · · · , vcn. The sec-
ond part is m continuous blocks E1 · · ·Em

4. A block Ei

(1 ≤ i ≤ m) consists of the primitive task epi , two com-
pound tasks vci1 and vci2 (1 ≤ i1, i2 ≤ n) whose respec-
tive vertices vi1 and vi2 in G are connected by the edge ei,
and one additional compound task hc

i . Further, the block also
has the ordering constraints (epi , v

c
i1
), (epi , v

c
i2
), and (epi , h

c
i )

which are drawn by thin arrows. Each thick arrow in the fig-
ure represents a set of ordering constraints specifying that
all tasks in the left-hand side are ordered before those in
the right-hand side. Afterward, we construct one method
mvi = (vci , tnvi) with tnvi = ({t1, t2}, ∅, {(t1, s), (t2, s)})
for each vci in which s is an action. Additionally, for each
hc
i (1 ≤ i ≤ m), we construct a method mhi

= (hc
i , tnhi

)
such that tnhi

= ({t1, t2}, ∅, {(t1, s), (t2, s)}) as well. Fi-
nally, we construct the target task network tn as shown by
Fig. 2. By construction, each compound task in tnI has only
one method that can decompose it. Adding an ordering con-
straint to some method mvi with 1 ≤ i ≤ n is now equiv-
alent to selecting the respective vertex into the independent
set. Next we show that an independent set of size k exists if

4Note that each Ei (1 ≤ i ≤ m) is not a compound task but an
abbreviation of a component in tnI .

and only if tn can be turned into a solution by adding order-
ing constraints to methods.

( =⇒ ): Suppose V ′ is an independent set of size k. The
change sequence that turns tn into a solution can be found
as follows. For each vi ∈ V ′, we add the ordering constraint
(t1, t2) to the method mvi . Afterward, we examine whether
there exists some edge ej of which two endpoints are not
in V ′, and if it is the case, we add the ordering constraint
(t1, t2) to the method mhj . By accomplishing this proce-
dure, tn can now be obtained from tnI .

( ⇐= ): Suppose X is a change sequence that turns tn
into a solution. An independent set of size k can be found
by examining each operation in X iteratively and check-
ing whether it adds the ordering constraint (t1, t2) to some
method mvi (1 ≤ i ≤ n). If so, the respective vertex vi is in
the set. The remaining operations that adds (t1, t2) to some
mhi (1 ≤ i ≤ m) can be simply ignored.

Note that the only difference between the solution (which
is uniquely defined) to the (unmodified) planning problem P
and the task network tn in the presented proof is their order-
ing constraints. Thus, the proof still holds when the opera-
tions that change actions in methods are allowed. Moreover,
since each method constructed in the proof does not have
any ordering constraint at the beginning, allowing ordering
constraint deletions is redundant as well. The following re-
sult is then a direct corollary.
Corollary 3. Let X ⊆ {ACT+

PO, ACT−
PO, ORD+, ORD−} and

X ≥ 1. FIXMETHSX
PO is NP-complete.

Instead of asking whether there exists a change sequence
of arbitrary length that transforms a task network into a so-
lution, we are also interested in finding an optimal one. The
decision problem asking for that is formulated in terms of an
additional integer k.
Definition 16. Let X ⊆ {ACT+

SET, ACT−
SET, ORD+, ORD−}

and X ≥ 1, SET ∈ {TO, PO}, and k ∈ N, the problem
FIXMETHSX,k

SET is identical to FIXMETHSX
SET except that any

change sequence should be limited in length by k.
We have shown in our previous work that the problem

is NP-complete in a total order setting (Lin and Bercher,
Cor. 1). In a partial order setting, any given FIXMETHSX

PO
instance can be reduced to a FIXMETHSX,k

PO instance by repli-
cating the planning problem and the target task network
given and setting k to the upper bound given by Lem. 1.
Hardness thus follows immediately. For membership, al-
though the given k can be exponentially large via logarith-
mic encoding, we can always guess a change sequence of
length smaller than the minimum of k and the polynomial
bound given by Lem. 1. Thereby, the problem is in NP as
well.
Corollary 4. Let X ⊆ {ACT+

PO, ACT−
PO, ORD+, ORD−} and

X ≥ 1. FIXMETHSX,k
PO is NP-complete.

5 Complexity of Fixing the Model – Given A
Task Network and A Method Sequence

So far our investigation only consider a given planning prob-
lem and a task network which is supposed to be a solution.
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Figure 2: The constructions of tnI and tn in the proof of Thm. 2. Each thick arrow represents a set of ordering constraints
specifying that the tasks in the lhs are ordered before those in the rhs. Each thin arrow denotes a single ordering constraints.
Each dashed rectangle represents nothing but a group of tasks that is part of tnI or tn.

One can identify that one possible source of hardness is that
we do not know which methods should be applied to gen-
erate the task network in question. To eliminate this source,
we consider another scenario where we are given not only a
task network and a planning problem, but a decomposition
method sequence that is supposed to decompose the initial
task network into the given one. For the practical motivation
for this scenario, consider, e.g., a scenario in the context of
modeling assistance where a user provides a plan as well
as a method sequence to a planning system and argues that
the plan must be generated by the given method sequence,
whereas a plan verification system (Behnke, Höller, and Bi-
undo 2017; Barták, Maillard, and Cardoso 2018; Barták
et al. 2020, 2021b) rejects the plan. Thus, there must be some
methods in the planning model that are incorrectly imple-
mented. Correcting the model and identifying which meth-
ods are flawed can not only satisfy user requests but serve
as counter-factual explanations (Ginsberg 1986; Chakraborti
et al. 2017; Chakraborti, Sreedharan, and Kambhampati
2020) telling users what are the implementation errors in the
case that plan verification fails, e.g., in a hierarchical plan-
ning competition.

Definition 17. Let X ⊆ {ACT+
SET, ACT−

SET, ORD+, ORD−}
and |X| ≥ 1, SET ∈ {TO, PO}, P be a planning problem,
m = m1 · · ·mn (n ∈ N0) be a sequence of methods, and
tn be a task network. The problem FIXMSEQX

SET with SET
specifying whether it is in a TO or a PO setting is to decide
whether there is a sequence of change operations X consist-
ing of the operations restricted by X such that P →∗

X P ′,
and tnI →∗

m′ tn with m′ = βX (m1) · · ·βX (mn).

In our early study (Lin and Bercher 2021) we have shown
that the problem is NP-complete in general in the context
of totally ordered HTN planning. Here we will extend this
result by showing that the presence of the method sequence
does make the problem become easier when certain condi-
tions are satisfied.

Proposition 2 (Lin and Bercher (2021, Thm. 5)).
FIXMSEQX

TO with X ⊆ {ACT+
TO, ACT−

TO} is NP-complete.

Theorem 3. Let X = {ACT+
TO, ACT−

TO}. The problem
FIXMSEQX

TO can be decided in constant time if tnI con-
tains no primitive tasks and there exists at least one method

mi = (ci, tni) (1 ≤ i ≤ n) in m such that for all
mj = (cj , tnj) with 1 ≤ j ≤ n and j ̸= i, ci ̸= cj .

Proof. Suppose mi is the method in m that satisfies those
conditions. A change sequence that turns tn into a solution
can always be found by first removing every action from
each method in m and then inserting the tasks in tn in turn
into mi. Thus, the problem is constant time decidable.

Unfortunately, Thm. 3 does not hold in the case where we
are only allowed to add or remove actions.

Theorem 4. FIXMSEQACT−
TO

TO is NP-complete even if tnI

and m satisfy the conditions presented in Thm. 3.

Proof. Let X = ACT−
TO. Membership follows from Prop.

2. For hardness, we reduce from the general FIXM-
SEQX

TO problem. Let P = (D, tnI , sI) with D =
(F,Np, Nc, δ,M), m, and tn be the planning problem, the
method sequence, and the task network given by an in-
stance of the general FIXMSEQX

TO problem, respectively. We
construct an equivalent instance as follows. We first con-
struct a planning problem P ′ = (D′, tn′

I , sI) with D′ =
(F,Np, Nc ∪ {c′}, δ,M ∪ {m′}) where c′ is an additional
compound task name, m′ = (c′, ε) decomposes c′ into an
empty task network, and tn′

I = tnI c
′. Afterwards, we con-

struct the method sequence m′ = mm′ and keep tn un-
changed. Since m′ results in an empty task network, we im-
plicitly forbid ACT−

TO being applied to it. Thus, the general
problem has a ‘yes’ answer if and only if the problem we
constructed has one.

Theorem 5. FIXMSEQACT+
TO

TO is NP-complete even if tnI

and m satisfy the conditions presented in Thm. 3.

Proof. Let X = ACT+
TO. Membership follows from Prop.

2. For hardness, we reduce from the general FIXM-
SEQX

TO problem. Let P = (D, tnI , sI) with D =
(F,Np, Nc, δ,M), m, and tn be the planning problem, the
method sequence, and the task network given by an instance
of the general FIXMSEQX

TO problem, respectively. To com-
plete the reduction, we first construct the planning problem
P ′ = (D′, tn′

I , sI) with D′ = (F,Np ∪ {p′1, p′2}, Nc ∪
{c′1, c′2}, δ,M ∪ {m′

1,m
′
2}) where p′1 and p′2 are two ad-

ditional primitive tasks, c′1 and c′2 are additional compound
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tasks, m′
1 = (c′1, p

′
1) and m′

2 = (c′2, p
′
2) decompose c′1 and

c′2 to p′1 and p′2, respectively, and tn′
I = tnI c

′
1 c

′
1 c

′
2. Next

we construct the method sequence m′ = mm′
1 m

′
1 m

′
2 and

the task network tn′ = tn p′1 p
′
1 p

′
2 that should be a solu-

tion to the modified planning problem. The existence of p′1
and p′2 ensures that actions cannot be added to m′

1 and m′
2.

Thus, the general FIXMSEQX
TO instance has a yes answer if

and only if the problem we construct has one.

Next we extend our investigation to partially ordered HTN
planning. We again consider the problem under the solution
criterion given by Def. 7. Note that the polynomial upper
bound presented in Lem.1 still holds because the methods in
m is a subset of M , i.e., the number of methods that need
to be changed is smaller than the size of M , and thus the
minimal number of changes required must not exceed that
upper bound. NP-membership thus follows immediately.
Corollary 5. Let X ⊆ {ACT+

PO, ACT−
PO, ORD+, ORD−} and

X ≥ 1. FIXMSEQX
PO is in NP.

On the other hand, the NP-hardness of the variants in a PO
setting where only changing actions is allowed is a direct
corollary of Prop. 2. Taken together, we immediately have
the following result.
Corollary 6. FIXMSEQX

PO with X ⊆ {ACT+
PO, ACT−

PO} and
|X| ≥ 1 is NP-complete.

Next we consider the complexity of the problem when
changing ordering constraints is allowed.
Theorem 6. FIXMSEQORD+

PO is NP-complete.

Proof. Membership has been given by Cor. 5. For hardness,
we again reduce from the independent set problem. Given
any instance of the independent set problem, we first con-
struct a planning problem P and a target task network tn that
are identical to those presented in the proof of Thm. 2. We
have argued there that any compound task in the constructed
initial task network has only one method which can decom-
pose it. Thus, we can choose any method sequence that re-
sults in a solution to P as m, and the proof still holds.

The presented proofs also imply that allowing any com-
bination of the defined changes will not make the problem
easier because of the same argument made for Cor. 3.
Corollary 7. Let X ⊆ {ACT+

PO, ACT−
PO, ORD+, ORD−} and

X ≥ 1. FIXMSEQX
PO is NP-complete.

Additionally, Thm. 3 can be further generalized in the
framework of partially ordered HTN planning since a
change sequence can always be constructed by following the
same procedure if the conditions described there hold.
Theorem 7. FIXMSEQX

PO can be decided in constant time if
{ACT+

PO, ACT−
PO} ⊆ X , tnI does not contain any primitive

task and there exists at least one unique method in m.
We now proceed to study the complexity of finding the

minimum number of changes required. We again define the
problem by introducing an extra integer k.
Definition 18. Let k ∈ N. The problem FIXMSEQX,k

SET with
X ⊆ {ACT+

SET, ACT−
SET, ORD+, ORD−} and X ≥ 1 and

SET ∈ {TO, PO} is identical to FIXMSEQX
SET except that

we demand that any change sequence is limited in size by k.

The NP-completeness of the problem in the context of to-
tally ordered HTN planning has been given by our previous
work (Lin and Bercher 2021). For partially ordered HTN
planning, since the polynomial upper bound given by Lem.
1 still holds, the arguments made for Cor. 4 is still valid,
which implies NP-completeness.
Corollary 8. Let X ⊆ {ACT+

PO, ACT−
PO, ORD+, ORD−} and

X ≥ 1. FIXMSEQX,k
PO is NP-complete.

One may ask whether there exist some conditions that
make the problem easier once they are satisfied. For exam-
ple, in totally ordered HTN planning, the problem can be de-
cided in polynomial time if each method in the given method
sequence decomposes a unique compound task (Lin and
Bercher 2021). However, we cannot guarantee that the same
argument holds in a partial order setting due to the existence
of isomorphic task networks. Thus, whether such conditions
exist in the context of partially ordered HTN planning is still
an open question and will be studied in the future.

6 Complexity of Fixing the Methods – Given
An Action Sequence

Our previous discussion over partially ordered HTN plan-
ning is based on the solution criterion given by Def. 7 be-
cause deciding whether a partially ordered task network
has an executable linearisation is intractable. The remain-
ing question is whether changing planning models becomes
easier under the solution criterion given by Def. 6 if an ex-
ecutable linearisation of a task network is already provided.
We formally define this problem as follows.
Definition 19. Let X ⊆ {ACT+

PO, ACT−
PO, ORD+, ORD−}

and X ≥ 1, P be a partially ordered HTN planning prob-
lem, and π be an action sequence. We define the problem
FIXTSEQX

PO as: Is there a sequence of method-change oper-
ations X such that P →∗

X P ′, P ′ has a solution that pos-
sesses a linearisation which is identical to π, and X consists
of the operations with respect to the value of X .

Clearly, Lem. 1 still holds for this problem because an
action sequence π is actually a totally ordered task network
which itself is a special partially ordered task network. It
then follows that all variants are in NP.
Corollary 9. Let X ⊆ {ACT+

PO, ACT−
PO, ORD+, ORD−} and

X ≥ 1. FIXTSEQX
PO is in NP.

If we restrict ourselves to totally ordered HTN planning
and only consider the operations that change actions in
methods, then the problem is identical to the one we stud-
ied before (Lin and Bercher 2021), which implies the NP-
completeness of these variants.
Corollary 10. Let X ⊆ {ACT+

PO, ACT−
PO} and |X| ≥ 1.

FIXTSEQX
PO is NP-complete.

For the variants where only changing ordering constraints
is allowed, it turns out that they are NP-complete as well.
Corollary 11. Let X ⊆ {ORD+, ORD−} and |X| ≥ 1.
FIXTSEQX

PO is NP-complete.

Proof. Membership has been given by Cor. 9. Hardness fol-
lows from that fact that VERIFYSEQ is NP-hard for the
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Figure 3: The construction for the proof of Prop. 1 in our ear-
lier work (Lin and Bercher 2021). The constructed domain
contains only one primitive task (action) s.

class HTNunordered (Behnke, Höller, and Biundo 2015, Cor.
5) where HTNunordered refers to the class of totally un-
ordered HTN planning problems. If a planning problem is
in HTNunordered, deleting ordering constraints is clearly re-
dundant. Adding ordering constrains is also pointless be-
cause those operations will only increase the possibility that
a given action sequence is not a valid linearisation of a task
network into which can be decomposed from the initial task
network of a planning problem. Therefore, any VERIFY-
SEQ instance with the input planning problem belonging
HTNunordered can be reduced to a FIXTSEQX

PO instance with
an arbitrary X ⊆ {ORD+, ORD−} and |X| ≥ 1.

When it comes to the combination of changing actions
and changing ordering constrains, we shall first consult the
proof of Prop. 1 presented in our earlier work (Lin and
Bercher 2021). The reduction we constructed is similar to
the one shown in Thm. 2 except that tnI is totally ordered,
and each compound task in tnI is now decomposed into an
empty task network by the respective method, see Fig. 3.
By construction, the only way to reach the target action se-
quence is by adding s to some methods. Thus, the operation
that deletes an action immediately becomes pointless. Al-
though our original proof is not concerned with changing
ordering constraints, those are pointless as well because we
can neither change the existed ordering constraints in tnI

nor add new ones to methods. The following result thus fol-
lows immediately.
Corollary 12. Let X ⊆ {ACT+

PO, ACT−
PO, ORD+, ORD−}

and X ≥ 1. FIXTSEQX
PO is NP-complete.

The decision problem aiming at finding the minimal num-
ber of changes required is formulated as follows.
Definition 20. Let k ∈ N, P be a partially ordered HTN
planning problem, and π be an action sequence. For each
X ⊆ {ACT+

PO, ACT−
PO, ORD+, ORD−} and X ≥ 1, the prob-

lem FIXTSEQX,k
PO is identical to FIXTSEQX

PO except that we
demand that any change sequence is bounded by k.

Both membership and hardness are implied by the pres-
ence of the polynomial upper bound of the minimal number
of changes required.
Corollary 13. Let X ⊆ {ACT+

PO, ACT−
PO, ORD+, ORD−}

and X ≥ 1. FIXTSEQX,k
PO is NP-complete.

7 Conclusion
We investigated the computational complexity of deciding
whether there exists a sequence of model change operations
(could be of limited length) that transforms a planning prob-
lem into another one that has a given task network as a so-
lution in the context of partially ordered HTN planning. Our
results indicate that the problem is NP-complete unless addi-
tional constraints are specified, e.g., having no primitive task
in the initial task network of a planning problem and having
no duplicate methods in a decomposition method sequence
that is supposed to generate a solution. Our results can be ex-
ploited in the future by transforming the decision problems
into some well-studied NP-complete problems which can be
solved by efficient solvers, e.g., SAT, and fully integrating
model-change into MIP systems.
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Abstract

Verifying HTN plans is an intractable problem with two exist-
ing approaches to solve the problem. One technique is based
on compilation to SAT. Another method is using parsing,
and it is currently the fastest technique for verifying HTN
plans. In this paper, we propose an extension of the parsing-
based approach to verify totally-ordered HTN plans more ef-
ficiently. This problem is known to be tractable if no state
constraints are included, and we show theoretically and em-
pirically that the modified parsing approach achieves bet-
ter performance than the currently fastest HTN plan verifier
when applied to totally-ordered HTN plans.

Introduction
Plan verification is about finding if a given action sequence
forms a correct plan according to a given planning domain
model. For classical plans, the verification problem consists
of checking if the action sequence is executable starting with
the initial state and checking if the goal condition is satisfied
in the final state (Howey and Long 2003). For hierarchical
plans, plan verification additionally requires that the action
sequence can be obtained by decomposition of some task. A
specific root task, which decomposes to the action sequence,
might also be given to describe the goal task.

There exist two approaches to hierarchical plan verifica-
tion. One uses a translation of the verification problem into a
Boolean satisfiability problem (Behnke, Höller, and Biundo
2017). The second uses parsing and it supports state con-
straints (Barták, Maillard, and Cardoso 2018; Barták et al.
2020). The hierarchical planning domain model can be seen
as a formal grammar (Höller et al. 2014; Höller et al. 2016;
Barták and Maillard 2017) and the plan verification prob-
lem is then similar to checking if a word (action sequence)
belongs to the language generated by the grammar, which
can be done by parsing. Parsing does not require informa-
tion about the goal task – the method finds any task that
decomposes to the action sequence, which makes it appro-
priate also for plan and task recognition (Vilain 1990).

The parsing-based approach seems to be significantly
faster than the SAT-based approach (Barták et al. 2020).
Nevertheless, both approaches struggle from the combinato-
rial explosion and, depending on the domain; they can verify
plans of lengths up to a few dozens of actions. This is not
surprising as the problem of verifying hierarchical plans is

NP-hard (Behnke, Höller, and Biundo 2015; Bercher et al.
2016) and hence computationally expensive. This holds for
general hierarchical plans with task interleaving and the par-
tial order of tasks. However, as can be seen from the Interna-
tional Planning Competition 2020 on HTN planning, many
domain models contain totally-ordered tasks. Further, there
is a significant body of research dedicated to totally-ordered
HTN planning in particular (Olz, Biundo, and Bercher 2021;
Behnke and Speck 2021; Behnke 2021; Lin and Bercher
2021; Schreiber et al. 2019; Behnke, Höller, and Biundo
2018; Alford, Kuter, and Nau 2009; Marthi, Russell, and
Wolfe 2007; Nau et al. 1999). Plan verification for a totally-
ordered problem without state constraints is known to be
tractable (Behnke, Höller, and Biundo 2015). Nevertheless,
no hierarchical plan verifier exploits this theoretical result,
no verifier specializes in exploiting the total order, and no
generalisation to problems with state constraints exists.

We propose an extension of the parsing-based verifica-
tion algorithm (Barták et al. 2020) to work faster for totally-
ordered domain models. While the CYK algorithm (Sakai
1962) for parsing context-free grammars appears to be appli-
cable here at first glance, this is not the case. Totally-ordered
models can contain state constraints, which cannot, to our
current knowledge, be compiled or handled by the CYK
algorithm. Our primary modification is in handling prece-
dence relations in the totally-ordered setting. The extended
algorithm still works for arbitrary partially ordered hier-
archical plans. It detects if the model uses totally-ordered
tasks, and then uses a more strict formulation of precedence
constraints, which decreases the number of generated tasks
significantly. The algorithm works in a bottom-up fashion
starting with a given action sequence ā. It terminates once
a compound task is found that can be decomposed into ā.
Apart from other work on plan verification, our approach
is loosely related to another that aims at computing abstract
plans that are maximally abstract while still allowing to gen-
erate a non-redundant plan (de Silva, Padgham, and Sardina
2019). The proposed algorithm also performs a bottom-up
approach, though it requires a specific decomposition rather
than the entire model.

HTN Plan Verification by Parsing
We use a standard STRIPS formalization (Fikes and Nils-
son 1971). Let P be a set of propositions describing prop-
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erties of world states. Then, a world state is modeled as a
set S ⊆ P of propositions that are true in that state (ev-
ery other proposition is false). Each action a is modeled
by three sets of propositions (pre(a), eff+(a), eff−(a)),
where pre(a), eff+(a), eff−(a) ⊆ P and eff+(a) ∩
eff−(a) = ∅. The set pre(a) describes positive precon-
ditions of action a. These propositions must be true right
before the action a. Action a is applicable to state S iff
pre(a) ⊆ S. Sets eff+(a) and eff−(a) describe the posi-
tive and negative effects of action a. These propositions will
become true or false in the state right after executing the ac-
tion a. If an action a is applicable to state S then the state
right after the action a is:

γ(S, a) = (S \ eff−(a)) ∪ eff+(a).

γ(S, a) is undefined if action a is not applicable to state S.
We say that an action sequence (a1, . . . , an) is executable
with respect to a given initial state S0 if the precondition of
each action is satisfied in the state right before it:

pre(ai) ⊆ γ(γ(. . . γ(S0, a1), . . .), ai−1).

Hierarchical Task Network Planning (Erol, Hendler, and
Nau 1996) was proposed as a planning framework that in-
cludes control knowledge as recipes for solving specific
tasks. The recipe is modeled using a task network – a set
of sub-tasks to solve the task and a set (a conjunction) of
constraints between the sub-tasks. Let T be a compound
task and ({T1, ..., Tk}, C) be a task network, where C are
its constraints (see later). We can describe the decomposi-
tion method as a rewriting rule saying that T decomposes to
sub-tasks T1, ..., Tk under the constraints C:

T → T1, ..., Tk [C]

The order of sub-tasks in the rule does not matter (opposite
to rewriting rules in grammars) as the precedence constraints
in C explicitly describe the order. If the tasks T1, ..., Tk
in each method are totally ordered, then we speak about a
totally-ordered HTN model.

HTN planning problems are specified by an initial state S0

and an initial task representing the goal. This goal task needs
to be decomposed via decomposition methods until a set of
primitive tasks – actions – is obtained. These actions must be
totally ordered and satisfy all the constraints obtained during
decompositions. The obtained plan (a1, . . . , an) must be ex-
ecutable with respect to S0. The state right after the action
ai is denoted Si. We denote the set of actions to which a
task T decomposes as act(T ). If U is a set of tasks, we
define act(U) = ∪T∈Uact(T ). The index of the first ac-
tion in the decomposition of T is denoted start(T ), that is,
start(T ) = min{i|ai ∈ act(T )}. Similarly, end(T ) means
the index of the last action in the decomposition of T , that
is, end(T ) = max{i|ai ∈ act(T )}.

The decomposition constraints for a method T →
T1, ..., Tk can be of the following three types, where the first
is also known as an ordering constraint and the latter two are
essentially state constraints (U, V, {t1, t2} ⊆ {T1, ..., Tk}):
• t1 ≺ t2: a precedence constraint meaning that in every

plan the last action obtained from task t1 is before the
first action obtained from task t2, end(t1) < start(t2),

• before(p, U): a precondition constraint meaning that in
every plan the proposition p holds in the state right before
the first action obtained from tasks U , p ∈ Sstart(U)−1,

• between(U, p, V ): a prevailing constraint meaning that in
every plan the proposition p holds in all the states between
the last action obtained from tasks U and the first action
obtained from tasks V ,
∀i ∈ {end(U), . . . , start(V )− 1}, p ∈ Si.

The HTN plan verification problem is formulated as fol-
lows: Given a sequence of actions (a1, a2, . . . , an) and an
initial state S0, is the sequence of actions executable with
respect to S0 and obtained from some compound task?

Algorithm 1 presents the recent parsing-based approach
to HTN plan verification (Barták et al. 2020) extended with
the check of total-order constraints at line 13 (see the next
section). The set ≺ represents the precedence constraints
of the method, bef is the set of before constraints, and
btw is the set of between constraints. Executability of the
action sequence is verified at lines 2-5. The while loop
(lines 7-26) groups actions/tasks into compound tasks by
using the methods from the model until it finds a task T0
such that act(T0) = {a1, a2, . . . , an} (line 26, the plan is
valid) or it constructs all possible tasks that decompose to a
subset of actions in the plan (line 27, the plan is invalid).
The sets act(T ) are represented using Boolean vectors I
(I(j) = 1⇔ aj ∈ act(T )). These vectors are used to check
that each action is generated from one task only (line 19).
Indexes bj and ej for task Tj describe values start(Tj) and
end(Tj) respectively. They are used when checking the de-
composition constraints.

Totally-Ordered HTNs
The parsing-based verification algorithm may generate an
exponential number of pairs (T, act(T )), where T is a task
and act(T ) is a subset of actions from the plan that can be
generated from the task T . This is because actions from dif-
ferent tasks may interleave in the plan, and hence we must
assume subsets act(T ) of actions from the plan when com-
posing the tasks T . There is an exponential number of such
sets with respect to the length of the plan. However, when
the domain model is totally ordered, then the sets act(T )
form contiguous sub-sequences of actions (Figure 1).

Proposition 1. For a totally ordered HTN domain model,
each task decomposes to a contiguous sub-sequence of ac-
tions in the plan.

Proof. Assume a pair of different tasks T and T ′ used in the
decomposition of some goal task Tg to a sequence of actions
such that T and T ′ are not descendants of each other. There
must exists a common ancestor task Ta for tasks T and T ′ in
the decomposition tree and a method Ta → T1, ..., Tk [C]
used for the decomposition. Let the task T be obtained from
the sub-task Ti and T ′ be obtained from the sub-task Tj . As
the domain model is totally-ordered, without loss of gener-
ality, we may assume that Ti ≺ Tj and hence end(Ti) <
start(Tj). As T is a sub-task of Ti, we know end(T ) ≤
end(Ti) and similarly start(Tj) ≤ start(T ′). Together we
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get end(T ) < start(T ′). Hence for any pair of non descen-
dant tasks T and T ′, it holds either end(T ) < start(T ′)
or end(T ′) < start(T ), which means that the tasks do not
interleave in the plan.

We can exploit this property when verifying plans for
totally-ordered domain models as follows. Assume a decom-
position method T → T1, ..., Tk [C] in a totally-ordered do-
main model. Then it holds ∀i ∈ {1, . . . , k− 1} : Ti ≺ Ti+1.
We call these precedence constraints direct precedences to
distinguish them from classical precedence relations. Note
that it is easy to detect automatically, if the domain model is
totally ordered, for example, by using a transitive closure of

Data: a plan P = (a1, ..., an), an initial state S0, and
a set of decomposition methods (domain
model); TO = true if the domain is totally
ordered,

Result: true if the plan can be derived from some
compound task, false otherwise

1 Function VERIFYPLAN
2 for i = 1 to n do
3 if ¬(pre(ai) ⊆ Si−1) then
4 return false
5 Si = (Si−1 \ eff−(ai)) ∪ eff+(ai)

6 sp← ∅; new← {(Ai, i, i, Ii) |i ∈ 1..n}
Data: Ai is a primitive task corresponding to

action ai, Ii is a Boolean vector of size n,
such that ∀i ∈ 1..n, Ii(i) = 1,
∀j 6= i, Ii(j) = 0

7 while new 6= ∅ do
8 sp← sp∪new; new← ∅
9 foreach decomposition method R of the form

T0 → T1, ..., Tk [≺,bef,btw] such that
{(Tj , bj , ej , Ij)|j ∈ 1..k} ⊆ sp do

10 if ∃(i, j) ∈ ≺ : ¬(ei < bj) then
11 continue with the next method
12 if TO ∧ ∃i : ¬(ei + 1 = bi+1) then
13 continue with the next method
14 b0 ← min{bj |j ∈ 1..k}
15 e0 ← max{ej |j ∈ 1..k}
16 for i = 1 to n do
17 I0(i)←∑k

j=1 Ij(i);
18 if I0(i) > 1 then
19 continue with the next method
20 if ∃(p, U) ∈ bef : p 6∈ Smin{bj |j∈U}−1 then
21 continue with the next method
22 if ∃(U, p, V ) ∈ btw ∃i ∈ max{ej |j ∈

U}, . . . ,min{bj |j ∈ V } − 1 : p 6∈ Si then
23 continue with the next method
24 new← new∪{(T0, b0, e0, I0)}
25 if ∀k, I0(k) = 1 then
26 return true

27 return false
Algorithm 1: Parsing-based HTN plan verification

T1 T2 T1 T2

start(T1)
start(T2)

end(T1)
end(T2)

start(T1)
start(T2)

end(T1)
end(T2)

Figure 1: Task interleaving (left) vs. totally ordered (right).

precedence relations in the decomposition methods and ver-
ifying that sub-tasks in the method are totally ordered. The
direct precedence relation Ti ≺ Ti+1 means that the last ac-
tion of task Ti is right before the first action of task Ti+1.
This is a consequence of Proposition 1. Task T decomposes
to a contiguous action sequence P . Each of its sub-tasks Ti
also decomposes to a contiguous action sequence and these
sub-sequences are ordered as end(Ti) < start(Ti+1). To-
gether these sub-sequences must form the sequence P with-
out any gap. Hence, the direct precedence relation imposes
a more strict constraint

end(Ti) + 1 = start(Ti+1). (1)

Note that the above claim also holds in the reverse order.
Suppose we impose the above ordering constraint (1) for di-
rect precedence relations in all decomposition methods. In
that case, the tasks decompose to contiguous sequences of
actions as no action can be inserted between any pair of di-
rectly following tasks.

The extended HTN plan verification algorithm (Algo-
rithm 1) checks the direct precedence constraints for totally-
ordered domain models at line 13. This extension gives the
theoretical guarantee on the number of generated tasks.

Proposition 2. Let t be the number of tasks in the totally-
ordered HTN domain model and n be the number of ac-
tions in a plan. Then the extended HTN plan verifica-
tion algorithm generates at most O(t × n2) different pairs
(T, act(T )).

Proof. For totally ordered domain models, the sets act(T )
form contiguous sub-sequences of the plan. These sub-
sequences are identified by the first and the last actions in the
sequence, and hence there are at most O(n2) such sets. The
same set of actions may be generated from different tasks;
hence the maximal number of different pairs (T, act(T ))
that the parsing-based verification algorithm may generate
is O(t× n2).

Note that if the original verification algorithm is applied
to totally-ordered domain models, then it may still generate
an exponential number of pairs (T, act(T )) because the al-
gorithm allows sets act(T ) to be arbitrary subsets of actions
in the plan. The experimental study confirms this.
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Empirical Evaluation
We compared the recent HTN plan verification algo-
rithm (Barták et al. 2020) with its extended version that de-
tects totally-ordered domain models and imposes constraints
(1) to check the direct precedence constraints used in decom-
position methods. Compared to previous evaluations, we
have significantly increased the number of instances we con-
sider. The International Planning Competition (IPC) 2020
has released an extensive set of plans1 that were generated
by the planners in the IPC on the IPC domains2. We are us-
ing the set of totally-ordered plans provided by the IPC, that
is, all plans in our evaluation are totally-ordered. This set
contains 10963 plans with an average length of 239 actions
and a maximum length of 131071 actions.

Both the original verifier (Barták et al. 2020) and the mod-
ifications presented in this paper were implemented in C# 7
(from .NET 4.7). For running the program, we used mono in
version 6.8.0.105 on a singularity container based on Ubuntu
20.10. We ran all experiments on an Intel Xeon Gold 6242
CPU (2.80GHz) with 5GB of RAM and a timeout of 10 min-
utes. The memory limit was never reached.
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Figure 2: The number of solved problems per time.
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Figure 3: Direct comparison of runtimes.

The summary results are presented in Figure 2 showing
the number of solved instances within a given time. The
new approach solves a significantly larger number of in-
stances (8870) than the original approach (2443). Any in-
stance solved by the original approach was also solved by

1https://github.com/panda-planner-dev/ipc-2020-plans
2https://github.com/panda-planner-dev/ipc2020-domains
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Figure 4: Runtime of the original algorithm as a function of
plan length (omitting plans with more than 10.000 actions).
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Figure 5: Runtime of the extended algorithm as a function of
plan length (omitting plans with more than 10.000 actions).

the new approach, while the new approach solved 6427
instances more. Figure 3 presents the direct comparison
of both techniques using the same data. Each point repre-
sents one of the 2443 problem instances solved by both ap-
proaches. The runtimes of the algorithms define the coordi-
nates of the point. Of these 2443 instances, the old approach
is faster in 362 instances. Of these 362, only 159 have a run-
time of more than one second. For these 362 instances, the
old algorithm is faster than the new one by more than 10%
in only 24 instances and at the most only 25% faster. The
minor overhead of the new algorithm seems not to incur a
significant disadvantage. For 210 instances, the runtime is
identical, and for the remaining 1871 instances solved by
both verifiers, the runtime of the new one is faster. The re-
duction in runtime on these 1871 instances is on average
46.36% with a maximum of 99.93%.

Figures 4 and 5 show the dependence of runtime on plan
length for the original and extended algorithm, respectively.
Again, it is clearly visible that the new method solves a
larger number of instances. The new approach can verify
about one order of magnitude longer plans than the original
algorithm. The longest verified plan for the old technique
has 1500 actions, while for the new one has 4095 actions.
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Conclusions
We proposed extending the HTN plan verification algorithm
to impose a more strict constraint describing direct prece-
dence relations for totally-ordered models. The effect of this
modification on the runtime of the algorithm is dramatic.
The new algorithm verifies a much larger number of prob-
lem instances and also longer plans. As totally-ordered HTN
domain models are frequent in practical applications, the
method brings automated HTN plan verification closer to
practical applicability on non-trivial plans and domains.
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Abstract
This paper presents a preliminary approach to solve the
Multi-Robot Task Allocation problem through hierarchical
auctions combined with the use of HTN planning. We present
the global approach and the challenges arisen by partially-
ordered HTNs through some examples. We finally outline
some options to integrate such constraints in the allocation
scheme.

Introduction
Deploying multi-robot systems for complex missions, such
as post-catastrophic situation assessment or submarine
mine-hunting, requires to reason about the tasks that the
robots must perform, depending on their capabilities and the
current situation. We then need to solve a Multi-Robot Task
Allocation (MRTA) problem (Gerkey and Matarić 2004).
Given a set of n robot R = (r1, . . . , rn) and a set of s tasks
Q = (t1, . . . , ts), solving the MRTA problem consists in
finding an allocation A : Q → R, i.e. allocate each task
t ∈ Q to a robot r ∈ R.

When the environment is highly dynamic, tasks have to
be reallocated regularly, due to the impossibility for some
robot to achieve allocated tasks, or to the arrival of new tasks
to achieve. The auction-based approaches have been exten-
sively considered to approximately solve the MRTA prob-
lem in such environments (Dias et al. 2006).

While simple auction schemes only allocate tasks one af-
ter the other, hence not yielding optimal allocations, near-
optimal allocation schemes need to resort to combinatorial
auctions, i.e., auctions where each robot can bid over any
subset of the tasks to allocate. However, solving the Win-
ner Determination Problem (WDP), which is done by the
auctioneer based on robots’ bids, becomes untractable for
combinatorial auctions. A good balance between expressing
combinatorial auctions and solving the corresponding WDP
has been proposed through hierarchical auctions, where
subsets of tasks on which robots can bid are limited to nodes
of the task decomposition.

Hierarchical auctions have been used to allow robots to
bid on abstract tasks, which has the advantage for the bidders
to account for local constraints on primitive tasks (Zlot and
Stentz 2006; Liu et al. 2013; Khamis, Elmogy, and Karray
2011). However, in these approaches, greedy Breadth-First-
Search (BFS) based algorithms have been proposed to solve

the WDP. Consequently, they cannot handle causal con-
straints between tasks nor correctly manage ordering con-
straints.

In a former work, we laid the groundwork of an auction-
based approach that allocates hierarchical tasks (Milot et al.
2021). We implemented a first prototype and tested it on
totally-ordered coverage problems for multiple underwater
robots. We obtained good performances in term of solution
quality and computation time with respect to the state-of-
the-art. Encouraged by the results of this proof of concept,
we formalize in this paper the approach with causal and or-
dering constraints.

This approach relies on HTN planning (Bercher, Alford,
and Höller 2019) to both estimate individual bids and solve
the WDP. While integrating HTN planning in the hierarchi-
cal auction scheme is quite straightforward when HTN prob-
lems are totally ordered, managing partial-order problems is
more challenging.

The next section summarizes related work. We then de-
scribe the general approach and detail the steps of the pro-
cess for totally-ordered problems. Finally, we illustrate the
current limits of the approach for partially-ordered tasks and
we draw the first ideas to integrate these constraints into the
proposed approach.

Related Work
Auction-based approaches to handle the MRTA problem
have been explored for a long time (Dias et al. 2006),
mainly because of their simplicity and their ability to han-
dle dynamic events and unreliable communications (Otte,
Kuhlman, and Sofge 2019).

The most basic scheme involves Single-Item (SI) auc-
tions (Koenig, Keskinocak, and Tovey 2010): the auction-
eer agent, which is responsible of the allocation, has only
one item to allocate. This scheme then follows these steps:
(1) the announcement, when the auctioneer opens the auc-
tion by broadcasting the information on the item for sale to
the bidders; (2) the bids estimation, in which each bidder
estimates the cost associated to the item and sends back its
bid to the auctioneer; (3) the Winner Determination, where
the auctioneer decides to which bidder the item is allocated;
and (4) the reward announcement, in which the auctioneer
announces which bidder won the auction. In the SI scheme,
each bidder produces a single bid for the auctioned item,
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and the winner determination simply consists of selecting
the best bid.

A direct improvement of this scheme are Sequential
Single-Item (SSI) auctions: the auctioneer announces a list
of items for sale, and each bidder produces a bid for each
item of this list. If some items remain not allocated after
solving the WDP, the auctioneer starts a new round with the
remaining items. The process goes on until all items are allo-
cated or a stop criterion is reached. While SSI allows robots
to prioritize some items over others (Kalra, Ferguson, and
Stentz 2005; Dias, Ghanem, and Stentz 2005; Botelho and
Alami 1999), it does not allow to express the dependencies
between the bids. Indeed, a strong assumption of SI and SSI
schemes is the independence of the bids, which results in
allocating at most one item per robot at each round.

However, such dependencies may be mandatory to ex-
press in complex problems, when the tasks (i.e. the items)
have temporal or causal constraints between them. Nunes
and Gini (2015) have proposed a sequential auction scheme
for temporally constrained tasks, where the auctioneer main-
tains a Simple Temporal Network (STN) of the items for
sale. However, this approach is used for the allocation of
tasks of an already computed STN, while in our approach
we aim at solving both the allocation and the selection of
the tasks to perform in order to fulfill a mission objective.

Zlot and Stentz (2006) proposed an auction scheme for
hierarchical tasks, in which an item consists of an AND/OR
tree that decomposes a complex task into sub-tasks. Bidders
can then express bids on any node of this tree, and the auc-
tioneer can decide to allocate a complete sub-tree to a robot
in a single round. A direct benefit of this approach is to better
interleave task decomposition and allocation. Consequently,
by selling sub-trees, this approach allows bidders to take ac-
count of tasks’ dependencies in their bids (e.g. by placing
a more interesting bid on an abstract task than on the sum
of its individual tasks). In addition, OR nodes in the tree
induce bidders to make choices. Therefore, the MRTA prob-
lem to solve (by allocating nodes in the tree) becomes also
a planning problem. This feature allows to handle difficult
problems where choices are needed. Finally, by constrain-
ing hierarchically the possible sets of tasks, the hierarchical
auctions reduce the burden of classic combinatorial auctions
where a bid can be expressed on any subset of tasks.

This approach has been extended to allow bidders to buy
and resell tasks to others, possibly proposing a new de-
composition (Liu et al. 2013; Khamis, Elmogy, and Kar-
ray 2011). However, in these approaches, the WDP is solved
by a greedy BFS-like algorithm, where task allocations are
locally decided, without reasoning on the global task de-
composition tree. While it provides an efficient algorithm
in terms of computation time, the quality of the allocations
are questionable. Moreover, these approaches do not con-
sider temporal nor causal constraints between tasks, and due
to the specific WDP algorithm, these constraints cannot be
easily integrated in the approach.

Prerequisites
Notations
In this paper, we use the following notations, inspired from
the ones used by Erol, Hendler, and Nau (1994); Höller et al.
(2020). By L, we denote a first-order language composed of
finite sets of constants, predicate, primitive and compound
task symbols, an infinite set of variable symbols, and an
infinite set of labels denoted by L. Given a set of terms
x1, . . . , xk issued from this language, and s a task sym-
bol, we denote by t = s(x1, . . . , xk) a task (also called
task instance). A task t can be decomposed by a method
m = (t, tn), where tn = (L,≺, α) is a task network where
L ⊂ L is a set of labels, ≺ is a strict partial order over
L and α : L → X maps labels to the method sub-tasks.
We then denote a planning domain D as (L, TP , TC ,M)
where L is the underlying language, TP and TC are the sets
of primitive and compound tasks, and M the set of decom-
position methods. Finally we write a planning problem as
P = (D, sI , tnI) where sI is the initial state, and tnI is the
initial task network.

Solving a problem P = (D, sI , tnI) consists in finding
a solution task network tn such that tn is primitive and ex-
ecutable in sI , i.e., there is a sequence of tn tasks, that re-
spects the ordering constraints, in which the preconditions
of a task are valid in the state resulting from applying the
previous task.

Illustrative example
To illustrate our approach, we consider a BorderDelivery
problem, inspired from the transport and logistics problems
of the IPC2020 (Behnke et al. 2019). The goal of the Bor-
derDelivery problem is to move two packages from an area
Ext to an area Storage and check one of these packages in an
area Check before bringing it back to Storage. To move the
packages from Ext to Storage, robots can bring both pack-
ages at the same time or bring each package one by one. The
locations of packages are included in a predicate at(pkg, lo-
cation). Thus, preconditions of the tasks to allocate verify
this predicate and their effects change it, leading to causal
relations between tasks.

The corresponding domain and problem formulated in Hi-
erarchical Domain Definition Language (HDDL) are shown
respectively on Listings 1 and 2. This minimal example al-
lows to highlight the key points of our approach and to shine
a light on challenges with partially ordered problems. We
first explain the approach working under total order assump-
tion.

General Approach
Our approach uses a SSI auctions scheme, similarly to (Zlot
and Stentz 2006), but we use HTN planning at critical steps
of the process, and then build our approach on HTN struc-
tures. This process is depicted in Figure 1.

Our approach relies strongly on a duality global/local.
The global part corresponds to the multi-robot level, it con-
sists in describing what to allocate and to who. This part is
embodied by the task tree sent by the auctioneer and shared
with all robots participating to the auction. On the other
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( d e f i n e ( domain B o r d e r D e l i v e r y )
( : re q u ir eme nt s : t y p i n g )
( : t y p e s

l o c a t i o n l o c a t a b l e − o b j e c t
package − l o c a t a b l e )

( : c o n s t a n t s
s t o r a g e e x t check − l o c a t i o n
package−0 package−1 − package )

( : p r e d i c a t e s
( a t ? x − l o c a t a b l e ? v − l o c a t i o n ) )

( : t a s k random−check :parameters ( ) )
( : t a s k s t o r e−p a c k a g e s :parameters ( ? p1

? p2 − package ? l 1 ? l 2 − l o c a t i o n ) )
( :method m−random−check

:parameters ( ? p − package )
: t a s k ( random−check )
:ordered−subtasks ( and

( bring−new−package ? p s t o r a g e check )
( bring−new−package ? p check s t o r a g e )
) )

( :method m−store−packages−one
:parameters ( ? p1 ? p2 − package

? l 1 ? l 2 − l o c a t i o n )
: t a s k ( s t o r e−p a c k a g e s ? p1 ? p2 ? l 1 ? l 2 )
:ordered−subtasks ( and

( bring−new−package ? p1 ? l 1 ? l 2 )
( bring−new−package ? p2 ? l 1 ? l 2 ) ) )

( :method m−s tore−packages−al l
:parameters ( ? p1 ? p2 − package

? l 1 ? l 2 − l o c a t i o n )
: t a s k ( s t o r e−p a c k a g e s ? p1 ? p2 ? l 1 ? l 2 )
:ordered−subtasks ( and

( b r i n g−a l l−p a c k a g e s ? p1 ? p2 ? l 1 ? l 2 )
) )

( : a c t i o n bring−new−package
:parameters ( ? p − package

? l 1 ? l 2 − l o c a t i o n )
: p r e c o n d i t i o n ( and

( a t ? p ? l 1 ) )
: e f f e c t ( and

( not ( a t ? p ? l 1 ) )
( a t ? p ? l 2 ) ) )

( : a c t i o n b r i n g−a l l−p a c k a g e s
:parameters ( ? p1 ? p2 − package

? l 1 ? l 2 − l o c a t i o n )
: p r e c o n d i t i o n ( and

( a t ? p1 ? l 1 )
( a t ? p2 ? l 1 ) )

: e f f e c t ( and
( not ( a t ? p1 ? l 1 ) )
( not ( a t ? p2 ? l 1 ) )
( a t ? p1 ? l 2 )
( a t ? p2 ? l 2 ) ) ) )

Listing 1: HDDL description of the BorderDelivery domain.

hand, the local part corresponds to the how a particular robot
can accomplish these tasks. Also, we assume that all multi-
robot effects are included in the global part and local actions
do not impact them.

An auction is initialized by the definition of an Auction
problem that corresponds to the root task to be decomposed

( d e f i n e ( problem pb )
( :domain B o r d e r D e l i v e r y )
( :h tn

: s u b t a s k s ( and
( t 1 ( s t o r e−p a c k a g e s package−0

package−1 e x t s t o r a g e ) )
( t 2 ( random−check ) ) )

: o r d e r i n g ( and (< t 1 t 2 ) )
( : i n i t

( a t package−0 e x t )
( a t package−1 e x t ) ) )

Listing 2: HDDL description of the BorderDelivery prob-
lem.

Auction problem

Grounded HTN Tree 1

2

Local domain

Bid problems

Local plansResale costs

WDP problem

Allocations 3

item

bids

rewards

Figure 1: Protocol description. Rectangles represent infor-
mation or data structures managed by the agents. Blocks on
the left are managed by the auctioneer, blocks on the right
by each bidder. Dashed arrows represent data exchanged be-
tween the auctioneer and the bidders. Circles indicate pro-
cesses that aggregate information to build new structures.
Double arrows indicate calls to a HTN planner.

and allocated. In order to start the allocation process, we first
have to determine all the possible tasks to be allocated. To
do so, we build a Grounded HTN tree H from the auction
problem.

This Grounded HTN tree is a structure representing the
grounded tasks and methods of the problem similarly to the
Task Decomposition Graph (TDG) (Bercher et al. 2017).
However, the TDG does not allow to differenciate task in-
stances (i.e. a task symbol with associated parameters) that
occur several times while in the Grounded HTN tree each
task instance is labeled. This need for labeling the task in-
stances comes from both ensuring that our robots reason
over the same elements and that the mission is entirely ful-
filled.

The auctioneer then sendsH as an item for sale to the bid-
ders.H represents the task decomposition of the Multi-robot
problem. Each robot can bid on each task of the decomposi-
tion, depending on its ability to perform them.

In order to produce a bid on a labeled task in H, the bid-
der will plan it to estimate a cost. The solution to this plan-
ning problem will be composed of the bidder’s own local
actions (which will increment the cost). To this aim, the bid-
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der needs to express how a task in H can be accomplished
regarding its own capacities: this is achieved thanks to HTN
planning. The basic idea behind it is that we extend H with
HTNs representing the bidder’s local capacities and then use
a HTN solver to estimate a bid. The merging of H with the
bidder’s local domain is done preserving the structure of H
and the associated preconditions and effects on the multi-
robot problem. This is accomplished by applying a protocol
turning specific primitives tasks ofH into abstract tasks.

Consequently, each bidder produces, for each task to es-
timate, an estimation problem. This problem is specifically
built from the received item and its local domain for the task
to estimate and is solved to determine its bid value (process
1 ). These problems are then solved by a HTN planner to

produce the bid values that correspond to the cost of the lo-
cal plan associated to the task.

Then, bids received from the bidders need to be integrated
in order to find an allocation (i.e. a set of winning bids). To
this aim, the auctioneer extends H by including bids as new
decompositions of the concerned tasks, which produces a
WDP problem (process 2 ). This problem is then solved by
a HTN planner to decide which tasks of H are allocated to
which robot. Finally, the result of the allocation is dispatched
to the bidders.

Depending on the received bids, it may be possible to still
have unallocated tasks at the end of the auction round. In this
case H is modified to account for the allocated tasks. Then
a new round is started by sending a new item for sale (with
the updated HTN tree) to the bidders.

Hierarchical auctions on totally-ordered HTNs
When the auction problem is totally ordered, the process is
sound. We detail the steps in this section. Then, we show
the challenges raised when considering a partially ordered
auction problem.

As we consider totally ordered problems, we need to add
several constraints in our Border Delivery example. These
are precedence constraints between every tasks. For example
in our BorderDelivery problem, we have to store all pack-
ages before checking one. These precedence constraints are
encoded in the corresponding decomposition methods.

Auction Initialisation
Our approach aims to solve an MRTA problem defined by
an auction problem Pauc = (Dauc, sI , tnI) formulated by
the auctioneer. Dauc is a domain describing the high-level
decomposition of tasks at the multi-robot scale. In fact, this
domain focuses on the decomposition of tasks that can be al-
located, i.e. describing what can be allocated without taking
into account how a robot will accomplish the allocated tasks
in terms of its proper actions (goto, load, unload. . . ). sI is
the initial state determined by the auctioneer and tnI is the
initial task network of the problem. As a reminder, we con-
sider that all multi-robot effects are included in this problem
description and that local actions do not impact them.

Solving Pauc means solving the MRTA problem associ-
ated to this auction. However, as the decision scheme is de-
centralized, when robots bid on a task we need to determine

to which instance of this task in the final multi-robot plan
this bid is associated. Therefore, we cannot only reason on
Pauc and we need to identify each task instance in the prob-
lem.

To do so, we use Pauc as an input of the auction scheme.
From this auction problem, we build a grounded HTN tree
H (algorithm 1). The grounded HTN tree describes hierar-
chical decomposition of tasks while labels bring unicity and
identify them. During an auction round, robots rely on labels
to share information relative to the grounded HTN tree.

Algorithm 1: BuildGroundedHtnTree
Input: Pauc
Output:H = (VT , VM , E), labels

1 G ← TDG(Pauc)
2 if G has cycles then return error;
3 Let X be an empty First-In-First-Out list
4 Let ltop be a new unique label
5 VT ← {(ltop, top)}, where top is the root task of G
6 labels← ∅; VM ← ∅; E ← ∅
7 X.push((ltop, top))
8 while X is not empty do
9 (l, t)← X.pop()

10 forall method m ∈ G such that
m = (t, (L,≺, α)) do

11 VM ← VM ∪ {(l,m)}
12 E ← E ∪ {((l, t), (l,m))}
13 forall u ∈ L do
14 Let v be a new unique label
15 VT ← VT ∪ {(v, α(u))}
16 E ← E ∪ {((l,m), (v, α(u)))}
17 labels← labels ∪ {(l, u, v)}
18 X.push((v, α(u)))

This algorithm first builds a TDG from the auction prob-
lem. However, as the TDG does not allow to differenciate
multiple occurences of a task instance the algorithm goes
through the TDG in a breadth-first search way while label-
ing each task instance. In order to accomplish this transla-
tion from the TDG to the grounded HTN tree, the TDG must
not have cycles, otherwise the algorithm will never end. We
verify this condition with the TDG properties.

We then initialize H by adding the root task top, with a
unique label ltop to the set of task vertices. Then, we expand
H by creating, for each labeled task (l, t), and each decom-
position method m of t in the TDG, a labeled method (l,m)
in the set of method vertices. Finally, for each sub-task u of
m, we create a new unique label v, and the corresponding
labeled sub-task to H, and store the label mapping to the
labels set. labels will contain tuples (li, lj , lk) representing
that sub-task with label lj in the decomposition method of
task labeled li has label lk in H. Figure 2 represents the
resulting grounded HTN tree for a BorderDelivery auction
problem.

At each round, the auctioneer sends H to each bidder,
along with complementary information from the auction
problem. An item for sale δ is then defined as a tuple
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Figure 2:H for a BorderDelivery problem. Rounded rectangles are labeled tasks, hexagons are labeled methods.

(Hδ, sδ, Lδ), where Hδ is a finite grounded HTN tree rep-
resenting the hierarchical decomposition between labeled
tasks and the associated precedence constraints (included in
the decomposition methods); sδ is a set of atomic formulas
on the constants inHδ; Lδ is the set of task labels inHδ that
are sellable, i.e. on which robots can produce bids.

For example at the first round of the BorderDelivery prob-
lem, the auctioneer sends δ1 with Hδ1 (illustrated on Fig-
ure 2), sδ1 which contains at(pkg, location) predicates spec-
ifying the initial locations of the packages, and Lδ1 =
{l0, l1, l2, l3, l4, l5, l6, l7}.

Estimating bids with HTN planning
Once an item for sale δ is received, the bidder must compute
a bid for each feasible labeled task among Lδ , i.e. each task
executable by the bidder. The bid valuation corresponds to
the cost of performing this task. Therefore, for each l ∈ Lδ ,
we build a planning problem Pl = (Dl, sl, tnl), and ask a
HTN planner to solve it.

To compute this estimation, robots must indicate how they
can perform primitive tasks of Hδ . They may indeed need
to perform specific actions, like moving to the locations of
packages, activating sensors or actuators to grab packages,
etc. We consider that the descriptions of the tasks specific to
each robot are defined in a local problem. This local problem
has the following constraints: first, it must share the tasks
that the robot can decompose locally with the auction prob-
lem (i.e., symbols and constants). Second, we reasonably
consider that the local and auction problems do not share
any predicate. It allows indeed to consider that a multi-robot
task on the auction problem cannot depend on a predicate
that could be validated only by a specific local action of a
single robot. Conversely, that robot’s local actions cannot
depend on effects of multi-robot tasks.

The aggregation of the item and the local problem cor-
responds to step 1 in Figure 1. It consists, for each label
lδ ∈ Lδ on which the bidder wants to produce a bid, in
extending Hδ in the following way: each leaf task l of H
that is either a descendent of lδ , or was already allocated
to the bidder in previous rounds, is replaced by an abstract
task with exactly one ordered method, made of (in order) (1)
a start(l) action representing the beginning of l, and con-
taining only the preconditions of l, (2) an abstract task that

will be decomposed in the bidder local problem, and (3) an
end(l) action representing the end of l, and containing only
the effects of l. Other primitive tasks are accounted a cost of
0. Essentially, start(l) and end(l) allow to insert the robot’s
local actions between the preconditions and effects of the
task l that were defined inH.

Figure 3 illustrates this process by showing the expan-
sion of the task labeled l4 from the BorderDelivery prob-
lem. Tasks in yellow correspond to the decomposition in-
troduced earlier. Orange tasks correspond to the TDG built
with a robot’s local domain. For example, solving the bid es-
timation problem can lead to a sequence of actions such as
[start(l4)→ get-to(Ext)→ · · · → end(l4)].

Figure 3: Illustration of the decomposition of labeled task
l4 for the bid estimation of the BorderDelivery problem.
Hexagons represent methods, rounded rectangles represent
compound tasks while sharp rectangles are primitive tasks,
dotted lines represent nodes with hidden decompositions.
Blue nodes represent elements fromH. The specific decom-
position for the bid estimation is represented in yellow. Lo-
cal decomposition nodes are represented in orange.

Moreover, the bidder builds sl by merging sδ with its
proper initial state including its own local information (e.g.
its current position, energy. . . ). tnl is defined by the root task
ofHδ .

Finally, for each labeled task on which we want to esti-
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mate a bid, we synthesize a domain and problem (including
the decomposition mentioned earlier, and the initial states
both from the item for sale and the local problem). We rely
on the HDDL formalism to define these domain and prob-
lem. In this problem, primitive actions are either the start
and end actions introduced earlier, which have a null cost,
or bidder’s local actions, which may have a non-unit cost.
A HTN planner then solves this problem, producing both a
local plan to complete the task and a cost associated to this
plan. Actions start and end in the plan allow to check pre-
conditions and trigger effects of the task.

Finally, the bidder returns to the auctioneer a set B con-
taining triplets (l, c, P ), where l ∈ Lδ is a task label, c the
associated bid value, i.e. the cost returned by the planner,
and P the set of Hδ task labels present in the local plan re-
turned by the planner.

Solving the WDP with HTN planning
At the end of an auction round, the auctioneer solves the
WDP to determine the task allocations. Given Lδ the set of
labels of the tasks for sale and R = (r1, . . . , rn) the set of
bidders participating to the auction, we denote Bri the set of
received bids from the bidder ri bearing on labels in Lδ . The
set of all received bids is denoted by B =

⋃
ri∈R

Bri . Solving

the WDP consists in finding a set of winning bids Bw ⊂ B
such that each bidder wins at most one bid and each l ∈ Lδ
is won by at most one bidder.

In order to determine this set of winning bids, the auction-
eer needs to build Dwdp and Pwdp = (Dwdp, swdp, tnwdp)
a planning domain and problem dedicated to the WDP solv-
ing.

To do so, we complete Hδ with the bids received from
the bidders (step 2 in Figure 1). We do this by adding to
every task one method for every bid. Each of these methods
corresponds to a unique action whose cost is the bid value.
However, we must integrate the SSI scheme constraint on
bid independence, that enforces that at most one task (what-
ever its abstraction level) can be allocated to each robot.

Encoding this property in the actions corresponding to the
bids is quite straightforward. Each task on which a bid has
been received must then also be decomposed into an action
corresponding to not allocating this task (that we call resell).
The pattern is quite similar to the one used for bidding: we
add a new method for each task on which we have bids, de-
composed with start and end actions for primitive tasks,
and an abstract AllocateOrResell task that will itself be
decomposed into one method per bid plus one resell method.

Figure 4 illustrates this decomposition for task with
label l4, for which robot r1 bids. A new decom-
position leading to the task allocation or reselling
was added with the task network consisting in doing
start(l4) → AllocateOrResell(l4) → end(l4). And
AllocateOrResell(l4) can be decomposed as a resell ac-
tion or an allocate action to robots that have bid on this task,
here r1 submitted a bid on task l4.

Similarly to the estimation process, tnwdp is defined by
the root task of Hδ . However, the initial state swdp is the
same as sδ .

Figure 4: Decomposition of task l4 integrating received bids
for the WDP of the BorderDelivery problem. Hexagons
represent methods, rounded rectangles represent compound
task while sharp rectangles are primitive tasks.

As we cannot force the WDP to allocate exactly one task
to each robot, we cannot set the cost of the resell actions
to 0: these tasks would systematically be resold when opti-
mizing the allocation plan. Consequently, we need to define
in a clever way the resale costs to have a sound and effi-
cient allocation behavior. While these costs could be defined
per domain, we have proposed two strategies to define them,
based on the received bids on a task:

• a pessimistic strategy about the bids that will be received
in future rounds for this task, encouraging to allocate the
task at this round; the resale cost is then set as the maxi-
mum of the bid values for this task plus one;

• an optimistic strategy that hopes for better bids in the fu-
ture; the resale cost is set as the minimum of the bids val-
ues for this task plus one.

In summary, the auctioneer creates, from Hδ and the re-
ceived bids, a new planning problem Pwdp corresponding
to the WDP of this auction round. This problem, translated
to a HDDL domain and problem, is then solved by a HTN
planner, which returns a plan containing either an alloca-
tion action or a resell action for each task. The auctioneer
then sends reward messages with winning bids for the al-
located tasks. The winners keep traces of their reward and
commit the local plan associated to the winning bid (process
3 in Figure 1). Finally, the auctioneer integrates the plans

attached to the winning bids into Hδ1, and a new round is
started with the tasks to resell.

Auctioning with partially-ordered HTNs
The allocation protocol presented earlier is quite simple: a
consistent HTN tree is updated all along the rounds with the
plans corresponding to the allocated tasks, and is extended
respectively by the bidders to integrate their own decomposi-
tion when estimating bids, and by the auctioneer to integrate
the bids and solve the WDP. While the formulation requires

1this step, which also removes the deprecated decomposition
fromH, is quite straightforward, and is hence not further detailed.

Proceedings of the 4th ICAPS Workshop on Hierarchical Planning (HPlan 2021)

54



some modelling tricks, the process is sound and simple when
tasks are totally ordered.

In this section, we present through an example why
partially-ordered tasks cannot be managed by the previous
approach, and we give some perspectives towards integrat-
ing such constraints.

Illustrative example
Again, we use the BorderDelivery problem as a support ex-
ample. Without losing relevancy, we remove ordering con-
traints l1 → l2 and l4 → l5 because we do not need to
bring all packages before checking one and we do not need
to bring a precise package before the other, therefore the
problem is now partially-ordered.

Let us consider an auctioneer that tries to allocate theH of
Figure 2 in this partially-ordered case. The auctioneer sends
the corresponding item to two robots, r1 and r2.

Let us also consider that at the first round, r1 won task l4
and r2 won task l5. The plans of r1 and r2 are then respec-
tively (if we only look at primitive tasks in the multi-robot
problem) [l4] and [l5].

At the second round, the auctioneer sends an updatedH2,
where method (l1,m-store-pkg-all) has been removed, l4
and l5 are already allocated, and l2, l6 and l7 are sellable
tasks. At this second round, r1 wins l6, for which it has com-
puted the plan:

[l5 → l6 → l4] (1)

where tasks in bold correspond to tasks executed by r1 (ei-
ther already allocated or being bid) and non-bold tasks repre-
sents tasks allocated to another robot (or not allocated tasks)
that are necessary to the robot’s plan, i.e. tasks whose effects
are preconditions of robot’s tasks.

At the third round, only l7 is to sell. H3 integrates that
both l4 and l6 have been allocated to r1, and l5 to r2. Let us
consider that r2 wins l7, with the plan:

[l4 → l7 → l5] (2)

Therefore, at the end of the third round, all tasks have
been allocated and the auction is finished. However, the re-
sulting allocation cannot be executed. Both robots locally
computed a plan involving a temporal constraint between
one of their task and a task of the other robot. These con-
straints are specifically induced by a causal constraints on
the at predicate, representing the location of the packages.
We can indeed notice that the multi-robot plan issued from
equations (1) and (2) contains a mutual dependency between
l4 and l5.

Such a situation could not arise in totally-ordered prob-
lems: ordering constraints are already modeled in H, and
the plans computed by the robot cannot add new ordering
constraints.

Conversely, in partially-ordered problems, each bidder
may decide on its own to fix an order between tasks to solve
the bid problem, but this new constraints is not forwarded
to the auctioneer, and then to other bidders, then leading to
possible inconsistencies in the ordering constraints of each
local plan.

Problem statement
As we have seen in the previous example, inconsistencies
may arise due to the lack of information on the bidders’ lo-
cal plans when solving the WDP and estimating successive
bids. A worse situation may even happen: as a bidder de-
composes primitive multi-robot tasks with its local domain,
the resulting local plan can interleave these tasks, while they
are primitive for the auctioneer, i.e. not decomposable.

We then have to not only integrate information about or-
dering constraints coming from bidders local plans, but also
make the approach able to account for the interleaving of
tasks, at any level of the hierarchy (as bidders can bid on ab-
stract tasks), integrating causal relations with tasks allocated
to other robots.

Solution perspectives
The current approach for totally-ordered problems has al-
ready some nice features and assumptions that will help in-
tegrating all the considered constraints. First, the constraint
to allocate at most one task per robot per round eases the in-
tegration, as we will not have to consider simultaneous con-
straints coming from several bids of the same robot at the
same time. The update ofH to integrate allocated tasks will
also ensure that constraints from previous allocations are en-
forced in the new bids. Finally, the proposed decomposition
of primitive tasks with a start and end action will help for-
mulating constraints allowing the interleaving of tasks.

Therefore, to keep a sound problem, results (i.e. commit-
ted local plans) from the allocation of the previous round
must be encoded into the new H. By doing so, they will
be taken into account during the bid estimation phase with-
out need of further modification. Moreover, this encoding
directly comes out from the WDP solution which must not
deny the intended plans of the winners. Thus, the most chal-
lenging part is the WDP problem formulation (process 2 )
which must reflect the bidders’ intentions in order to provide
a consistent solution.

Consequently, we will integrate every local plan com-
puted during the bid estimation into the WDP problem.
More specifically, we will investigate whether integrating
this local plan can be done when decomposing the task on
which the bid is evaluated, in place of a simple action, as
illustrated in Figure 4.

Discussion
In this paper, we proposed a preliminary approach to handle
the Multi-Robot Task Allocation problem by solving hierar-
chical auctions with HTN planning. The approach relies on
hierarchically linked tasks and auctions in order to interleave
decomposition and allocation. Items for sale are HTNs and
HTN planning is used to both formulate the bids and solve
the Winner Determination Problem.

We presented a protocol that is sound for totally-ordered
problems. However, partially-ordered problems raise some
specific challenges, and we outlined some perspectives to
handle them and support causal and temporal constraints.
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Current work aim at improving the approach with the pro-
posed perspectives. Finally, we want to demonstrate the ap-
plicability of the approach to online reparation problems.
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Abstract
This paper describes our SHOPPINGSPREE HTN algorithm
for online planning in Partially Observable Markov Decision
Processes (POMDPs). SHOPPINGSPREE combines the HTN
planning algorithm from SHOP3, extensions to SHOP3’s rep-
resentation to handle partial observability, and Monte Carlo
Tree Search for efficient sampling in the problem space. This
paper presents only the algorithm and initial notes on the im-
plementation: this is work in progress.

1 Introduction
In this paper we describe SHOPPINGSPREE (named after a
US TV game show and SHOP3), a technique for solving Par-
tially Observable Markov Decision Processes (POMDPs) in
an online fashion – that is, interleaving planning and execu-
tion – based on Monte Carlo Tree Search (MCTS), currently
under development, building on the Hierarchical Task Net-
work (HTN) planner, SHOP3. We describe a complete algo-
rithm, but the implementation is still in very early stages: its
implementation is still messy, made up primarily of patches
to the existing version of SHOP3.However, the algorithm is
promising because it enables us to combine HTN planning
with sequential decision problems.

The key tenets of our approach are as follows: 1. We ap-
proach POMDPs as games against nature, where the sys-
tem’s objective is to execute an (approximately) optimal
strategy against its environment. 2. The planning agent’s
“turns” in this game are the set of actions taken between
observations. 3. The planning agent plans turn-by-turn (“on-
line”), allowing us to avoid computing full policies, which
can be exponentially large. 4. If myopic, turn-by-turn plan-
ning can be severely suboptimal. We use MCTS to provide
lookahead and avoid myopic decision making. 5. To apply
MCTS to POMDP planning, we combine planning in belief
space with sampling in the base state space.

In this paper we briefly introduce POMDPs and the text-
book “oil wildcatter” sequential decision problem. Again
briefly, we summarize MCTS. Then we explain the exten-
sions to SHOP3’s Knowledge Representation (KR), and how
to use it to represent a POMDP. Finally, we present our
method for integrating HTN planning and MCTS, and con-
clude with notes on some limitations, mention of related
work, and future directions.

A quick definition before we begin:

Definition 1 (POMDP) A POMDP, P =
〈S, s,A, T ,R,Ω,O〉 where 1. S is a finite set of states,
s ∈ S is the initial state;A is a finite set of actions;
2. T : S × A → Π(S) is the state-transition function,
assigning a probability distribution over successor states
when an action, a is executed in state s; 3. R is the reward
function, which may be defined over S × A, and defines the
reward, a real number reward received when a is executed
in s. The reward of a finite trace is the sum of the rewards at
each step in the trace. Equivalently, we use a cost function,
in the work described here. 4. Ω is a set of observations that
the agent may make; 5. O : S × A × S → Π(Ω) is the
observation function, which gives a probability distribution
over the set of observations that may be received when the
agent takes action a in state s0 and the successor state
(dictated by T ) is s1 (Kaelbling, Littman, and Cassandra
1998, adapted).

There are important subtypes of POMDP varying by time
horizon. We address only finite horizon POMDPs.

A POMDP’s solution is a policy: a mapping from belief
states to action choices. We define an optimal policy as a pol-
icy that provides maximum expected utility. Note that the
policy need not be explicitly computed. One way to think
about POMDPs is as games against “nature,” a stochas-
tic opponent. That is the perspective we take here. Rather
than computing a policy off-line and executing it, SHOP-
PINGSPREE computes its policy implicitly and on-line.

As a running example, we use the textbook “oil-
wildcatter” decision problem (Raiffa 1968): The oil wild-
catter needs to decide whether to drill or not. They don’t
know if their hole is dry, wet, or soaking. Their payoffs
are given in Table 1. All payoffs are net: profit less $70,000
for drilling, if the wildcatter chooses to. For $10,000, the
wildcatter can test the site’s geological structure: no struc-
ture (NS), open (OS), or closed structure (CS). The struc-
ture is correlated with the likelihood that oil is present (Ta-
ble 2). This problem may be formulated as a POMDP where
S = {Dry,Wet,Soaking}; Ω = {NS,OS,CS}, and A =
{test, drill}, and T andR are from Tables 1 and 2. Expected
rewards for some policies are given in Table 3.

2 Monte Carlo Tree Search (MCTS)
MCTS is a high-performance search method originally de-
veloped for game playing for games with extremely large
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Act
State a1 a2

Dry (θ1) - $70,000 0
Wet (θ2) $50,000 0
Soaking (θ3) $200,000 0

Table 1: Monetary Payoffs for Oil Wildcatter prob-
lem (Raiffa 1968, pp. 35).

Seismic Outcome Marginal Probability
State NS OS CS of state

Dry (θ1) .300 .150 .050 .500
Wet (θ2) .090 .120 .090 .300
Soaking (θ3) .020 .080 .100 .200
Marginal

probability
of seismic
outcome

.410 .350 .240 1.000

Table 2: Joint and marginal probabilities for Oil Wildcatter
problem (Raiffa 1968, pp. 35).

state spaces, such as Go. Our discussion here is heavily
indebted to the excellent survey by Browne et al.(2012).
Briefly, the job of MCTS is to estimate the value of each
node in the top of the search tree, so that an agent can choose
its actions by greedily taking the highest value choice. To do
this, the algorithm must search the tree so that it can ac-
curately estimate the value of early decisions on the even-
tual outcome (e.g., estimate the value of an opening move in
terms of its effect on the eventual outcome of a game). To
search the tree, the algorithm must have a way of choosing
a child at every node of the tree. MCTS splits its search into
two phases: first by tree policy, then by default policy.

In large search spaces, states near the root of the search
tree will be explored according to the tree policy, but
since the search space prohibits complete exploration, when
search reaches some depth threshold, the system will switch
to the default policy. The tree policy is generally a choice
that weights known estimates of child nodes – causing the
system to exploit its knowledge of where value is to be found
– against a term that weights parts of the tree that have not
been visited often – causing the system to explore new parts
of the search space. We use the popular UCT (Upper Confi-
dence Bounds for Trees) (Kocsis and Szepesvári 2006) rule:

arg min
a∈A

V (a)

N(a)
+ k

√
2 lnN

N(a)
(1)

where V (a) is the mean value of node a, N(a) is the visit
count, and N is the visit count of the parent of a, and k is a
constant. Currently, we use the original k ≡ 1/

√
(2) (Koc-

sis and Szepesvári 2006). Depending on problem, other pol-
icy rules may be better than UCT and, in UCT, different val-
ues of k may be better. We leave this for future work.

The default policy will be some extremely cheap, largely
random choice rule. At present, since we are working with
small problems, SHOPPINGSPREE has no default policy.

Algorithm 1 General MCTS approach, reproduced
from (Browne et al. 2012)
1: function MCTSSEARCH(s0)
2: create root node v0 with state s0
3: while within computational budget do
4: vl ← TREEPOLICY(v0)
5: ∆← DEFAULTPOLICY(s(vl))
6: BACKUP(vl,∆)
7: end while
8: return a(BESTCHILD(v0))
9: end function

When a “rollout” has been completed by reaching a leaf
node of the search tree, the value encountered at the leaf
will be backpropagated to update the estimates of the value
of nodes nearer the root of the tree, and their visit counts.

Finally, when some resource threshold is reached, the sys-
tem will choose an action (or set of actions) to take, based
on the highest expected value. In a game – including a game
against nature like our oil wildcatter problem – thee the
MCTS system will wait to receive the opponent’s move (e.g.,
the results of the seismic test), and then repeat the process.
The process is summarized in Algorithm 1.

3 Knowledge Representation (KR)
The current version of SHOPPINGSPREE makesonly mini-
mal extensions to the SHOP3 KR for domains and problems:
hidden propositions, and uncontrollable actions and meth-
ods. Other than this, we use standard SHOP3 (Goldman and
Kuter 2019) notation, which we review below.

SHOP3 primitive operators have a head, comprising an
operator name and parameters. They also have precon-
ditions, add-list, delete-list, and cost function. The add-
list and delete-list are lists of literals, potentially containing
parameter variables. The preconditions are more expressive
than STRIPS or PDDL: supporting logical operators, finite
quantification, and the invocation of arbitrary functions. We
will make use of this expressive power below. The cost func-
tion can be an arbitrary function of the parameters and any
variables bound in its preconditions. An example operator
from the oil-wildcatter domain:

(:op (!do-drill)
:precond (not (drilled))
:add ((drilled))
:delete ()
:cost 70)

SHOP3 method definitions have a head, and precondi-
tions as above and a task network. Note: variables in the
head and in the preconditions are scoped over the task net-
work. Task networks are made up of tasks and :ordered
and :unordered networks. For example:

(:method (make-decisions)
() ; empty preconditions
(:ordered (decide-test)

(decide-drill)
(profit)))
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Policy Details Expected Value Rescaled EV
Don’t test, don’t drill 1× 0 0 0.286
Don’t test, drill 0.5×−70 + 0.3× 50 + 0.2 ∗ 200 20 0.357
Test, drill iff CS −10 + (.09× 50) + (.1× 200) 14.5 0.338
Test, drill if OS or CS −10 + (.09× 50) + (.1× 200) + (.12× 50) + (.08× 200) 36.5 0.416

Table 3: Rewards for some policies, in thousands of dollars, and rescaled to between 0 and 1.

The above definition states that the (make-decisions)
task can be rewritten into the task network, unconditionally,
since its preconditions are empty.

SHOP3 domains may also have axioms, Prolog-style
Horn clauses that are used when checking preconditions.
The following axiom is used to compute the profit (?p) from
drilling when the oil condition is ?o:
(:- (drill-profit ?o ?p)

((= ?o dry) (= ?p 0))
((= ?o wet) (= ?p 120))
((= ?o soaking) (= ?p 270)))

SHOP3 permits a compressed representation allow-
ing multiple Horn clauses with the same head (here
(drill-profit ?o ?p)) to be combined.

Problems contain an initial state and task network:
(defproblem wildcatter ; problem name
wildcatter ; planning domain name
() ; initial state (empty)
(oil-wildcatter)) ; initial task network

A SHOP3 planning problem is solved when its task net-
work has been fully rewritten into a sequence of primitive
actions that is executable (each action’s preconditions are
satisfied when it is executed). We will see, though, that gen-
erating plans is only a subproblem for SHOPPINGSPREE.

We have made minimal extensions to SHOP3’s KR to
model finite-duration POMDPs: 1. We allow propositions
to be marked as hidden 2. We mark some methods as
stochastic: these methods are allowed to read hidden
propositions and invoke random in their preconditions.
3. We mark some operators as uncontrolled; these may read
hidden propositions in their preconditions, and do not ap-
pear in the agent’s history (see Section 4).

Here is an example of how these extensions are used in
the oil wildcatter problem:
(:stochastic-method (init-oil˜)
(and (assign ?r (random 1.0d0))

(oil-outcome ?r ?o))
(:ordered (!init-oil˜ ?o)))

(:op (!init-oil˜ ?o)
:add ((hidden (oil ?o)))
:cost 0)

(:- (oil-outcome ?r ?o)
((< ?r 0.5) (= ?o dry))
((> ?r 0.5) (< ?r 0.8) (= ?o wet))
((> ?r 0.8) (= ?o soaking)))

init-oil˜ randomly samples from a categorical to find
what the oil conditions then uses the uncontrolled operator
!init-oil˜ to record the hidden literal. All uncontrolled
tasks have the ˜ character as suffix.

We represent the oil wildcatter problem as follows (full
domain: https://pastebin.com/pUqLt2H6):

The top-level task is oil-wildcatter, which decom-
poses to prepare-problem and make-decisions.
prepare-problem decomposes to init-oil˜ fol-

lowed by init-test˜. init-oil˜, is as described
above.init-test˜ samples from a categorical (condi-
tioned on the oil) and adds (test-result s), for s =
ns, os, or cs. These are only revealed to the agent if it tests.
make-decisions expands to test-decision fol-

lowed by drill-decision. Each of these expands to a
decision to either perform or not perform the correspond-
ing action. !test incurs the testing cost and reveals the
value of o in (hidden (test-result o)) by adding
(test-outcome o). drill incurs the cost and accrues
some income depending on o in (hidden (oil o)).

The way SHOPPINGSPREE handles partial observability
is, in a way, the inverse of the one in Definition 1: state com-
ponents default to being visible, and must be explicitly hid-
den, rather than needing to be explicitly observed.

4 Planning Algorithm
In this section, we describe how we have fused MCTS with
SHOP3’s HTN planning algorithm. As with a conventional
planning problem, the input to SHOPPINGSPREE is a plan-
ning domain and problem (Section 3), but the notion of so-
lution is quite different. The “solution” is a sequence of ac-
tions generated in an attempt to maximize the agent’s utility
(as defined in the domain and problem): see Alg. 1. At the
moment, we have a very simple simulator, also based on the
planning domain and state. In a real application one would
connect the planning agent to effectors, and incorporate sen-
sory inputs from the environment.

A simplified version of SHOP3’s planning algorithm is
given in Algorithms 2, and 3. At the top level, the “Find
plans” procedure of Algorithm 2 is invoked with the initial
state, the top-level task from the planning problem, and the
empty set of bindings. For reasons of space, we do not dis-
cuass the basic SHOP3 algorithm in detail here. However,
these pseudocode procedures were taken from our previous
paper on SHOP3 (Goldman and Kuter 2019), interested read-
ers can consult that paper for further details.

The first modification to the planning algorithm is to use
the MCTS method for choosing options at nondeterminis-
tic choice points. These choice points occur at lines (5 in
Alg. 2), (2 in Alg. 3), and (8 in Alg. 3). In each case, it is
straightforward to adapt the MCTS bandit method to choose
one of the alternatives from the finite set.

There is a complication, however: the scores for the
MCTS algorithm must be tabulated at states that are equiv-
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Algorithm 2 Simplified planning search algorithm.
1: procedure FIND PLANS(S, T,B) . state, tasklist, bindings
2: if T = ∅ then
3: return () . No tasks: return empty action sequence.
4: end if
5: choose t ∈ T with no predecessors
6: if t is primitive then
7: o← operator for t
8: if o is applicable in S then
9: S′ ← result(o, S)

10: T ′ ← T − t
11: P ← FIND PLANS(S′, T ′, B)
12: return cons(o, P )
13: else
14: return FAIL
15: end if
16: else . t is a complex task
17: < b,R′ >= reduction(t, S)
18: if b is FAIL then
19: return FAIL
20: else
21: B′ = apply(b,B)
22: if B′ is FAIL then
23: . Merge new bindings with incoming.
24: return FAIL
25: end if . Replace t with its expansion R′ in T
26: T ′ ← replace(t, R′, T )
27: return FIND PLANS(S, T ′, B′)
28: end if
29: end if
30: end procedure

alent with respect to knowledge, rather than at complete
states. See line 3 of Alg. 4. This is necessary because the
agent can only choose actions based on the state it observes,
rather than based on complete knowledge. The oil wildcatter
can only choose to drill or not based on the results of the test
(if they have done it), not based on the full state of the world,
including the oil predicate. On the other hand, when doing
a rollout, the planner must take into account the full state in
order to project the outcome and its value. Put differently,
the agent can choose only based on the visible part of the
state, and the value estimates it collects through MCTS. But
the MCTS sampling algorithm must sample (project) based
on the full state, whose evolution it simulates.

In SHOPPINGSPREE, “equivalent with respect to knowl-
edge” is implemented by projecting SHOP3’s state onto the
set of visible propositions. The set of visible propositions
are those propositions that are not hidden (see Section 3).
In addition to this, the state index (b in Alg. 4) includes the
visible history of the state. The visible history of the state is
the path of actions from the initial state leading to this state,
omitting the uncontrolled actions.

The visible history is an essential part of the table index-
ing because the POMDP policy that we are computing is not
memoryless; MDPs have optimal policies that are memory-
less (Puterman 1994), but POMDPs do not unless the state is
taken to include the agent’s belief state, as well as the world
state. The tables that MCTS computes are approximations
of the value function, not the agent’s belief state.

Algorithm 3 Task reduction procedure
1: procedure REDUCTION(t, S) . task, State
2: choose m a method for name(t)
3: . List of bindings from precondition query.
4: b∗ = query(pre(m), S)
5: if b∗ = ∅ then
6: return FAIL
7: else
8: choose b ∈ b∗ . bindings from preconditions
9: R← task-net(m)

10: R′ ← apply(b,R)
11: return b, R’
12: end if
13: end procedure

Where Algs. 2 or 3 require a choice, the choice is made
according to Alg. 4, which either initializes the choice table
for the current choice and chooses an arbitrary alternative, or
chooses the best decision, based on the current statistics, ac-
cording to the MCTS rule chosen. For this reason, an MCTS
rollout corresponds to the generation of a full plan, fitted
to a particular outcome of the chance variables: in the case
of the oil wildcatter problem, the oil-state and the out-
come of a test (if the planner chooses to make one), given the
oil-state. Because the plan is completed in a specific
context in terms of the chance variables, it can be scored.

The score of each plan/rollout is backpropagated through
the tree nodes of the search tree, and onto the correspond-
ing statistics tables constructed as part of Algorithm 4. Per
Equation 1, we increment the count of the action chosen at
each table entry, and increment the cost entry with the cost
of the full plan. If the search reaches a dead end – the current
partial plan cannot be completed– we back-propagate +∞.

The rollouts and backpropagation are the way that MCTS
avoids the problems of myopic decision making we men-
tioned in the introduction. In the oil wildcatter problem, the
planner can “see” that testing will provide information that
will later be of use, rather than rejecting it because of the
up-front cost. This kind of lookahead is more expensive and
difficult under uncertainty than in classical planning.

The second modification is that this “planning algorithm”
is not used as a conventional planner. Instead, it is essentially
used as a way to populate the MCTS decision tables through
planning and sampling. When it is time for plan execution,
the system repeats the planning process, but this time, in-
stead of using the tables to randomly generate a chosen ac-
tion, the system takes the action dictated by the table: the one
with the highest expected value (breaking ties randomly).
Execution continues in this way until the system makes an
observation, at which time the entire process repeats.

5 Conclusions
In this paper we have described an algorithm for HTN-based
POMDP planning that combines the HTN planner, SHOP3,
with Monte Carlo Tree Search. POMDP planning requires
a combination of expressive power and sequential decision
making in which observations and actions are interleaved,
but where myopic planning and deterministic relaxations are
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Algorithm 4 Choice method (Browne et al. 2012, Alg. 2,
adapted)
1: C ← MCTSTable()
2: function CHOOSE(S, T,A) . state, choice type, alternatives
3: b← belief state forS
4: if 〈b, T 〉¬ ∈ C then . new choice table entry
5: C [〈b, T 〉]← new table for〈b, T 〉
6: return random member of A
7: end if
8: if ∃c ∈ alternatives | c¬ ∈ C [〈b, T 〉] then
9: return c . try untried option

10: else
11: return best element of C [〈b, T 〉]
12: end if
13: end function

insufficient to provide acceptable behaviors. Our work is still
at an extremely early stage where we have developed the al-
gorithm, but are still working to identify the best modeling
techniques and to refine our method to achieve the best per-
formance in the classes of problem that interest us.
Related work There is a great deal of work on applying
MCTS to various sorts of planning. An obvious parallel to
our work is the the application of MCTS to HTN by Wich-
lacz et al. (2020). The key difference here is that their work
applies to classical HTN planning, not POMDPs.

SHOPPINGSPREE will not be competitive with other plan-
ning systems based on MCTS that aim to handle large
POMDPs of standard structure (Silver and Veness 2010,
e.g.,). Where we hope that SHOPPINGSPREE will shine is
in problems with complex structures to the action space
that will take advantage of HTN capabilities, where the se-
quential decision making is relatively simple, but bushy, and
where we can profit from SHOP3’s expressive power, allow-
ing us to handle real-world complexities including object
creation, numerical attributes, etc..
Limitations A prominent limitation of this work is that it
cannot handle situations where the HTN planner can get “off
track” in the course of execution and not be able to com-
plete a plan. Consider a case where the planner has chosen
a method M = T → T1, T2, T3, to expand task T . Now
imagine something goes wrong in the course of executing
the subtasks of T1. Since the planner has committed to M ,
it can no longer back up and consider alternatives, either al-
ternatives to M , or alternatives to the current expansion of
T1. There are two ways to address this. The first is to ensure
that the planning domain does not feature such dead ends.
In our oil wildcatter example, as long as the discretization of
the test results is complete, there are no dead ends.

An alternative to the no dead ends property is to support
plan repair: the search space of the planner is expanded to
consider repair operations when the execution of the current
plan fails. We have developed an approach to plan repair for
SHOP3 (Robert P. Goldman, Ugur Kuter, and Richard G.
Freedman 2020) that we will incorporate in future work.
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Abstract

Hierarchical Task Network (HTN) planning is an expressive
planning formalism that has often been advocated as a first
choice to address real-world problems. Yet only a few ex-
tensions exist that can deal with the many challenges en-
countered in the real world. One of them is the capability
to express uncertainty. Recently, a new HTN formalism for
Fully Observable Nondeterministic (FOND) problems was
proposed and studied theoretically. In this paper, we lay out
limitations of that formalism and propose an alternative def-
inition, which addresses and resolves such limitations. We
conduct a complexity study of an alternative, more flexible
formalism and provide tight complexity bounds for most of
the investigated special cases of the problem.

1 Introduction
Hierarchical Task Network (HTN) planning is a planning ap-
proach that focuses on problem decomposition. Compound
tasks describe abstract activities, and the domain model de-
scribes how they can be carried out by exploiting decompo-
sition methods, pre-defined recipes stating by which plans
such compounds tasks may be implemented.

The goal is to find a plan – a sequence of primitive tasks
that can be executed – which successfully implements the
initially given initial compound tasks defining the planning
problem. Because this task hierarchy may be exploited to
encode expert knowledge and thus gives another means of
modelling a problem, and because it may be used to also ex-
clude undesired solutions, it has been used in many different
practical scenarios (Bercher, Alford, and Höller 2019).

In particular when facing real-world problems, we may
face challenges and limitations when modelling the world
with a fully deterministic model. Often, the world may be
dynamically changing (Patra et al. 2020), be only partially
observable (Richter and Biundo 2017), or require reason-
ing over actions with non-deterministic outcomes (Kuter and
Nau 2004; Kuter et al. 2005, 2009).

Most of these works in the realm of HTN planning and un-
certainty focused on developing planners that produce clas-
sical policies to (non-hierarchical) Fully Observable Non-
deterministic (FOND) problems. Task hierarchies were ex-
ploited as mere control knowledge, but solutions generated
need not to be refinements of the initial compound tasks –
which can be seen from the solution structure, which is still a

simple policy, i.e. a state/action mapping, which is not com-
plex enough to represent arbitrary long plans as solutions for
HTN problems due to their undecidability (Erol, Hendler,
and Nau 1996).

Recently, an extension to such FOND policies was pro-
posed capable of capturing solutions to FOND HTN prob-
lems where solutions need to be refinements of an initial task
network, just like in standard deterministic (i.e., FOD) HTN
planning (Chen and Bercher 2021). For this FOND HTN for-
malisation, we studied the computational complexity of var-
ious standard HTN problems, as well as the impact of two
ways when uncertainty is taken into account: during plan-
ning time (linearisation-dependent solutions), or during exe-
cution time (outcome-dependent solutions). The latter more
flexible solution definition states that a primitive (partially
ordered) plan is regarded a solution when after the execution
of any (non-deterministic) action one is still able to continue
executing the plan by picking an appropriate action depend-
ing on previous action outcomes until all actions of the plan
are successfully executed. This definition assumes that one
still needs to compute one such primitive plan (policy) be-
fore action outcomes may be taken into account. Thus we
will denote this formalism as FONDFM HTN, indicating that
they use “fixed methods” in their solutions.

Contributions

In this paper we propose another more flexible FOND HTN
formalisation where policies are no longer defined based on
primitive plans like that of Chen and Bercher (2021), but
allow a selection of decomposition methods for compound
tasks in the policy, which therefore allows choice of decom-
position methods depending on the outcome of executed
tasks. We thus denote the novel formalism FONDMP HTN
which indicate that we use “method-based policies”.

We begin by introducing the alternative formalisation fol-
lowed by a comprehensive complexity study on the plan ex-
istence problem. Similar to the studies made by Chen and
Bercher (2021), our results are all one class harder for most
subproblems with restricted recursion in comparison to stan-
dard FOD HTN planning. We also propose search algo-
rithms for solving FONDMP HTN problems which are ex-
ploited in our proofs, and may also serve as decision proce-
dures to be implemented in the future.
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2 Formalism
The definitions of the FONDMP HTN planning domain are
the same of that for FONDFM HTN planning by Chen and
Bercher (2021) by extending definitions for deterministic
HTN planning (Geier and Bercher 2011; Bercher, Alford,
and Höller 2019) to include nondeterministic actions. Due
to space constraints we will list Def. 2.1 to 2.4 by Chen and
Bercher (2021) for a FONDMP HTN domain and problem
and only provide additional definitions as required.
Definition 2.1. A task network tn is a tuple 〈T,≺, α〉 where

• T is a finite set of task id symbols or labels,
• ≺ ⊆ T × T is a strict partial order on T ,
• α : T → N maps a task id to some task name in the set

of task names N .
We also define an equivalence between two task networks

which might have the same underlying structure but differ-
ent task id symbols. Specifically, we say that two task net-
works tn = 〈T,≺, α〉 and tn′ = 〈T ′,≺′, α′〉 are isomor-
phic if there exists a bijection σ : T → T ′ between task id
symbols where for all t1, t2 ∈ T , we have (t1, t2) ∈ ≺ iff
(σ(t1), σ(t2)) ∈ ≺′ and α(t) = α′(σ(t)) for all t ∈ T . This
definition of equivalence will be required for building well
defined FONDMP HTN problems and solutions.

We also have notation for special task networks: let

tn(a) = 〈{t}, ∅, {(t, a)}〉 , tn∅ = 〈∅, ∅, ∅〉
denote the task network for a single task name a and the
trivial task network respectively.
Definition 2.2. An HTN domain D is a tuple
〈F ,NP ,NC , δ,M〉 where

• F is a finite set of facts,
• NP is a finite set of primitive task names,
• NC is a finite set of compound task names,
• δ : NP → A is an action mapping,
• M is a finite set of decomposition methods,

with NP ∪ NC = N disjoint and A ⊆ 2F ×
22

F×2F denoting the set of nondeterministic primitive
tasks. A primitive task or action is a tuple of precon-
ditions and effects a = (pre(a), eff(a)) with eff(a) =
{(addi(a), deli(a)) | 1 ≤ i ≤ n} for n dependent on a and
pre(a), addi(a), deli(a) ⊆ F . However, for ease of nota-
tion whenever we have a deterministic action (|eff(a)| = 1)
we will use (pre(a), add(a), del(a)) as to remove redundant
brackets. The definitions of FONDMP HTN planning actions
and non-hierarchical planning actions are equivalent so we
also formalise the mechanisms for applying actions to states.

Define a set of states S = 2F corresponding to subsets
of F . Let τ : A × S → {>,⊥} denote executability of
an action at a state where τ(a, s) = > for pre(a) ⊆ s and
τ(a, s) = ⊥ otherwise. For ease of notation, we also define
the executability function τ for primitive task names and id
symbols in the obvious way by τ(n, s) = τ(δ(n), s) and
τ(t, s) = τ(α(t), s) = τ(δ(α(t)), s) for n ∈ NP and t ∈ T
respectively. We also define an application function γ : A×
S → 2S where for a ∈ A, s ∈ S we have γ(a, s) undefined
if τ(a, s) = ⊥ and otherwise we have

γ(a, s) = {(s \ deli(a)) ∪ addi(a) | 1 ≤ i ≤ |eff(a)|}.

Similarly define γ on primitive task names and id sym-
bols by γ(n, s) = γ(δ(n), s) and γ(t, s) = γ(α(t), s) =
γ(δ(α(t)), s). Lastly, we say that tn = 〈T,≺, α〉 is a prim-
itive task network if all its tasks are primitive, meaning that
for all t ∈ T , we have α(t) ∈ NP .

Definition 2.3. Define m = (c, tnm) with c ∈ NC and
tnm = 〈Tm,≺m, αm〉 to be a (decomposition) method. We
can apply m to tn1 = 〈T1,≺1, α1〉 if there exists some t ∈
T1 where α1(t) = c, and in this case we say m decomposes
t in tn1 to generate a task network tn2 = 〈T2,≺2, α2〉 with

T2 := T ′1 ∪ T ′m, α2 := (α1 ∪ α′m) |T ′
1
,

≺2 := (≺1 ∪ ≺′m) |T ′
1

∪ {(t1, t2) ∈ T ′1 × T ′m | (t1, t) ∈ ≺1}
∪ {(t1, t2) ∈ T ′m × T ′1 | (t, t2) ∈ ≺1} ,

where T ′1 = T1 \ {t} and tn′m is a task network isomorphic
to tnm such that T ′1 ∩ T ′m = ∅. The |T ′

1
symbol denotes

restriction on the map α and ordering ≺ in the canonical
way to only tasks in T ′1. The requirement for T ′1 and T ′m
disjoint is such that ≺2 is still partial and α2 is well defined.
We denote this method application by

tn1 →t
m tn2.

Definition 2.4. An HTN problem P is a tuple 〈D, sI , tnI〉
with D a FONDMP HTN domain, sI ∈ 2F an initial state
and tnI an initial task network.

With a FONDMP HTN problem in hand, we now provide
explicit definitions for what a plan or solution means. Sim-
ilar to FONDFM HTN planning, we employ policies to de-
fine a solution. The difference between the two formalisms
lies in how decomposition plays into a solution. In FONDFM

HTN planning, solutions are defined by fixing a sequence of
decomposition methods to apply on the initial task network
and then constructing a policy for the acquired primitive task
network. On the other hand, we will integrate methods into
our policy, meaning that methods may be applied at different
times depending on nondeterministic task effects.

Although it appears that the latter idea is more flexible
by integrating decomposition into online execution, it has a
few drawbacks: policies can grow arbitrarily large and on-
line execution is hard. This arises from how we define a pol-
icy to take as input a task network and state, where the set of
task networks is possibly unbounded in contrast to outcome-
dependent solutions of FONDFM HTN problems which de-
fine policies for primitive task networks only using a lookup
table of a current state and previously executed tasks. The
latter is always bounded by noticing that there are only a
finite number of states and subsets of tasks to account for.

Definition 2.5. LetD be a FONDMP HTN domain. A policy
π is a partial function π : TN × S → T ×M′ where TN
is the set of all possible task networks, T is the union of the
sets of tasks in the task networks of TN andM′ =M∪{ε}.
Moreover, 〈(tn, s), (t,m)〉 ∈ π for tn = 〈T,≺, α〉 only if
t ∈ T and

• if t is primitive, m = ε, and
• if t is compound, m = (α(t), tn′) is a method of D.
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We also impose the condition on a policy that for all pairs
〈(tn1, s1), (t1,m1)〉 , 〈(tn2, s2), (t2,m2)〉 ∈ π, if s1 = s2,
then tn1 and tn2 are not isomorphic. This condition is re-
quired to create a well defined notion of execution of a pol-
icy as we shall now describe.

Execution of a policy for FOND STRIPS planning is de-
scribed as a reactive execution loop that executes actions
based on a survey of the state of the world, which shall also
be made explicit for FONDMP HTN planning for a given task
network tnI and state sI in Algorithm 1.

Algorithm 1: Policy Execution Procedure
1 (tn, s)← (tnI , sI);
2 while InstructionExists(π, tn, s) do
3 (t,m)← GetInstruction(π, tn, s);
4 if m = ε then
5 tn← Remove(tn, t);
6 Execute(t);
7 s← SenseCurrentState();
8 else
9 tn← Decompose(tn, t,m);

The function InstructionExists(π, tn, s) returns
true if tn is not the empty task network and there ex-
ists a task network tn′ that is isomorphic to tn such
that π(tn′, s) exists. GetInstruction(π, tn, s) returns
π(tn′, s), assuming that InstructionExists(π, tn, s)
is true. Remove(tn, t) returns the task network tn with-
out task t with the canonical restrictions to ≺ and α as
described in Def. 2.4 by Chen and Bercher (2021) and
Decompose(tn, t,m) the task network we get when m de-
composes t in tn. Lastly, SenseCurrentState() returns
the state of the world.

Having defined a mechanism to execute FOND task net-
works, we can now describe and formalise FONDMP HTN
solution criteria. We will define weak, strong and strong
cyclic solutions as is canonical to non-hierarchical nonde-
terministic planning (Cimatti et al. 2003) and also in YoYo,
a planner which integrates HTN planning for solving such
planning problems (Kuter et al. 2005, 2009). To formalise
these concepts we will define the execution structure of a
policy as a graph and use this graph structure to define our
solutions.

Definition 2.6. Let P be a FONDMP HTN problem. Let the
tuple L = 〈U ,V〉 where U ⊆ TN× S and V ⊆ (TN× S)×
(T × (M∪{ε}))× (TN×S) are minimal sets satisfying the
conditions (tnI , sI) ∈ U , and if (tn, s) ∈ U and π(tn, s) =
(t,m) then

1. if t is primitive, for all s′ ∈ γ(t, s) we have (tn\t, s′) ∈
U and ((tn, s), (t,m), (tn \ t, s′)) ∈ V ,

2. if t is compound, we have (tn′, s) ∈ U and
((tn, s), (t,m), (tn′, s)) ∈ V where tn→t

m tn′.
The execution structure induced by a policy π is the tuple
[L] = 〈[U ] , [V]〉 where [U ] is the set U quotient out by the
relation (tn, s) ∼ (tn′, s) iff tn and tn′ are isomorphic and
[V] is the collapsed relation corresponding to [U ].

For ease of notation, we will omit the equivalence rela-
tion notation (i.e. the square brackets) for an execution struc-
ture. We can also view an execution structure L as a directed
graph with nodes represented by elements in U and directed
edges by elements in V . Define (tnI , sI) to be an initial node
and any (tn, s) ∈ TN × S to be a terminal node if it has no
outgoing edges, and a goal node if tn = tn∅. We now pro-
ceed to define the three solution criteria.
Definition 2.7. Let P be a FONDMP HTN problem and tn
a task network. Let π be a policy with execution structure
L = 〈U ,V〉. We say that π is

1. a weak solution if L is finite and there exists a terminal
node of L that is a goal node,

2. a strong cyclic solution if every terminal node of L is a
goal node,

3. a strong (acyclic) solution if L is finite and acyclic and
every terminal node of L is a goal node.

Another way of interpreting the solution criteria is look-
ing at how Algorithm 1 terminates: weak solutions some-
times terminate and if it does, it has a chance of terminating
with an empty task network, strong solutions always termi-
nate with an empty task network (hence the requirement for
acyclic L), and strong cyclic solutions eventually terminate.

Practically, strong solutions are the most reliable as they
guarantee the goal condition be met in a finitely many steps.
This is followed by strong cyclic solutions which also guar-
antee that eventually we reach the goal condition or equiv-
alently, we never fail. However, execution can be arbitrar-
ily long. Finally, weak solutions are as their name suggests
‘weak’ in the sense that sometimes they do not even reach
the goal condition. Thus, we can see that strong solutions are
a special case of strong cyclic solutions which are in turn a
special case of weak solutions.

Problem Classes
Given that standard HTN planning is undecidable (Erol,
Hendler, and Nau 1996), studies have been made to find
problem subclasses can be decided. We list the commonly
studied subclasses here (Erol, Hendler, and Nau 1996; Al-
ford et al. 2012; Alford, Bercher, and Aha 2015). We will
define stratifications proposed by Alford et al. (2012) to help
define the latter two.
Definition 2.8. An HTN problem P is primitive if tnI is
primitive. Note that sets NC andM are now irrelevant.
Definition 2.9. An HTN problem P is regular if for its ini-
tial task network tnI = 〈T,≺, α〉 and for all its methods
(c, 〈T,≺, α〉) ∈ M it holds that there is at most one com-
pound task in T , and if t ∈ T is compound, it is the last task,
meaning that for all t′ ∈ T with t′ 6= t we have t′ ≺ t.
Definition 2.10. A stratification on a set S is a total order
≤ on S. An inclusion-maximal subset C ⊆ S is a stratum if
for all x, y ∈ C both x ≤ y and y ≤ x holds.
Definition 2.11. An HTN problem P is acyclic if no com-
pound task can reach itself via decomposition. More for-
mally, we can define a stratification on NC in P with c ≤ c′
if there exists a method (c, 〈T,≺, α〉) ∈ M and α(c′) ∈ T ,
and for all c, c′ ∈ NC , if c ≤ c′, then c′ 6≤ c.
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Definition 2.12. An HTN problem P is tail-recursive if we
can define a stratification onNC of P where for all methods
(c, 〈T,≺, α〉) it holds that if there exists a last compound
task t ∈ T , then we have α(t) ≤ c, and for any non-last
compound task t ∈ T , we have α(t) ≤ c and c 6≤ α(t).

Note by definition that primitive, regular and acyclic prob-
lems are all special cases of tail-recursive problems. We also
use the same definitions to describe decomposition methods.
For example a regular method is a method whose task net-
work has at most one compound task which has to be last.

3 Search Algorithms
In this section, we will describe two algorithms for deter-
mining plan existence of a given FONDMP HTN problem.
The motivation for doing so is simple: to provide baseline al-
gorithms for applications and to aid with membership proofs
in our complexity proofs in Section 4. Although not optimal,
they are very canonical in the sense that they are extensions
of other baseline algorithms for planning problems.

Alternating Progression Search
The first algorithm extends progression search which is con-
sidered the canonical search algorithm for solving HTN
problems (Alford et al. 2012; Höller et al. 2018; Höller et al.
2020) and also employed in efficient HTN planners such as
SHOP, SHOP2 and SHOP3 (Nau et al. 1999, 2003, 2005;
Goldman and Kuter 2019). We extend the algorithm by in-
troducing ‘universal’ vertices to the graph, similarly to uni-
versal states of an ATM or AND nodes of an AND/OR-tree,
to deal with nondeterminism.

Algorithm 2: Alternating Strong Progression Search
1 Procedure StrongPlanExistence (tn, s,M, V ):
2 if tn = tn∅ then return true;
3 if (tn, s) ∈ V then return false;
4 V ← V ∪ {(tn, s)};
5 guess a first task t in tn;
6 if t is a primitive task then
7 if not τ(t, s) then return false;
8 tn← Remove(tn, t);
9 return for-all s′ ∈ γ(t, s)

StrongPlanExistence (tn, s′,M, V );
10 else
11 guess a method m inM;
12 tn← Decompose(tn, t,m);
13 return StrongPlanExistence (tn, s,M, V );

Algorithm 2 provides the procedure for determining
plan existence. Given a FONDMP HTN problem P =
〈D, sI , tnI〉 with D = 〈F ,NP ,NC , δ,M〉, the alternating
procedure StrongPlanExist(tnI , sI ,M, ∅) determines
if a strong solution for P exists. The meaning of the input
variables tn, s,M are straightforward. The product set V
stores previously progressed task networks and visited states
in order to detect cycles and deal with them.

The given ATM progression algorithm is an extension of
the textbook progression algorithm used for classical HTN

planning to our FONDMP HTN setting. Progression is a
search algorithm which makes nondeterministic guesses for
choosing whether to execute a random first primitive task
or to decompose a compound task. By first task of a task
network tn, we mean any task that has no predecessors in
tn. After doing so, we remove the chosen task from the task
network and change the state if the chosen task was prim-
itive. If a solution exists, then by choosing the correct pro-
gression steps, we will end up with an empty task network
and satisfy the solution criterion. To extend this concept to
nondeterministic domains, we make use of universal states
of alternating Turing machines to recursively check whether
all possible progressed task networks from an executed non-
deterministic action contribute to a solution.

Line 2 checks whether we have progressed away the task
network and hence have reached an accepting state of the al-
ternating computation tree. Line 3 checks whether we have
visited the task network-state tuple before and enters a re-
jecting state. Line 4 then updates the previous task network-
state tuples. Line 5 makes a nondeterministic choice1 of a
task t with no predecessors in tn.

The remainder of the algorithm performs the progression
procedure depending on whether t is primitive or compound.
If t is primitive, lines 7 to 9 checks whether t is executable at
the progressed state s and if so proceeds to remove t from the
progressed task network and then recursively calls the func-
tion “for all” possibly progressed states as given by γ(t, s).
The for-all statement represents entering a universal state for
an alternating turing machine encoding. A more high level
interpretation is that we return the logical conjunction of the
StrongPlanExistence procedure for all possible pro-
gressed states. If t is compound, we guess a method for t and
expand the task network at t with such method and proceed
with the progression algorithm.

Note that this algorithm can be determinised by replac-
ing nondeterministic choices with branching as described in
Alg. 1 by Höller et al. (2018) and similarly replacing the for-
all statements in the canonical way. In fact, the optimisation
described in Alg. 2 in the same study for reducing branching
from decomposition methods in this determinised algorithm
can also be applied here. The reason we do not provide the
deterministic version of the algorithm is to emphasise the
usual tools (alternation) required to deal with nondetermin-
istic tasks and for complexity analysis later.

Figure 1 provides a visualisation of the high level
computation tree associated with the algorithm. We pro-
vide the abstract primitive problem it solves as follows.
Let D = 〈{1, 2} , {a, b, c} , ∅, δ, ∅〉 with δ defined by
a 7→ (∅, {({1}, ∅), ({2}, ∅)}), b 7→ ({2}, {1}, ∅), c 7→
({1}, {2}, ∅). Then we define the problem by P =
〈D, s∅, tnI〉 where s∅ = ∅ and tnI is the task network of
totally ordered primitive task names a, b, c.

Given that general HTN planning is undecidable, it is not
necessarily the case that the following algorithm terminates
though we will show later that the algorithm terminates for
certain problem subclasses. We can also modify the algo-

1Using an oracle to find the right choice, contrary to determin-
istic search where we find the correct choice via branching.
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Figure 1: Visualisation of the alternating progression search
algorithm. Denote s1 = {1}, s2 = {2}, s1,2 = {1, 2}.

rithm to allow for strong cyclic solutions by using the set V
of visited problem subclasses but this will not be provided
explicitly as it is not used for complexity proofs later.

Rectangular nodes in the figure represent search nodes
consisting of the currently progressed task network and
state. We omit the set V in the visualisation as there we do
not have to worry about cycles for primitive problems. Black
squares indicate primitive tasks and circles the selection of
a task by line 5 of the algorithm. Blue nodes indicate uni-
versal states where we have to check that all children nodes
are accepting, while the other rectangular nodes indicate ex-
istential states. Blue arrows indicate the subtree of the com-
putation tree corresponding to a strong solution.

Bounded Graph Search
In addition to progression search, there is another search
technique we can use to determine plan existence if we as-
sume that the number of reachable task networks under pro-
gression and state combinations are bounded (e.g. primitive,
acyclic, regular and tail-recursive problems). The main idea
is that we can generate a bounded search space in the form
of a graph (in contrast to a search tree) for a FONDMP HTN
problem. Another way of interpreting this is that we compile
a FONDMP HTN problem into a state transition system with
initial and goal states and solve the compiled problem simi-
larly to how Cimatti et al. (2003) generates the whole search
space as a graph for a non-hierarchical FOND planning
problem and uses such graph to solve the problem. Specif-
ically, let 〈S,A, I,G〉 be a state transition system with S a
set of states, A ⊆ S × 2S a set of nondeterministic actions
defined with an action defined as a tuple (sα, {s1, . . . , sn})
which when applied in sα can progress to any of the states
s1 to sn. Next, we have I ∈ S an initial state and G ⊆ S a

set of goal states. The definitions of strong and strong cyclic
solutions are similar to that for propositional planning.

To compile a FONDMP HTN problem into such a system
〈S,A, I,G〉, we begin by letting S be the set of all possible
reachable task networks and state tuples. Specifically, the
set of reachable task networks TNR for a problem is defined
to be the set of task networks that can be obtained from the
initial task network by applying a sequence of first tasks or
methods, quotient out by isomorphism. To minimise the size
of TNR, we apply methods to compound tasks which have
no predecessors. We will call S the set of subproblems given
that they can be viewed as HTN problems with the same
domain D and their task networks are part of a solution to
the initial task network.

To consider an example, suppose we have a regular HTN
problem. Then TNR includes the initial task network tnI , the
task networks for each method and all task networks that can
be reached from tnI by some number of primitive or com-
pound task application. This is because under a canonical
progression algorithm, we have at most one compound task
in the current task network, meaning that all task networks
must be some sub task network of a task network in method.
Thus for regular problems, TNR is bounded exponentially.

t1 t2
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t2

t3 s1

t2

t3 s2

t3 s1,2

t2

s1,2 s1,2

t1

t1
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t3

t2

Figure 2: The whole search space of a FOND HTN problem.

Then I = (tnI , sI) and G = {(tn∅, s) | s ⊆ F} denote
the initial and goal states of the compiled problem. Then we
define actions by looping through all σα = (tnα, sα) ∈ S as
follows. For each first task t in tnα,

• if t is primitive, define an action (transition)
a = (σα, {σi = (tnα \ {t}, si) | si ∈ τ(t, sα)}),

• else for each method applicable to t, define an action
a = (σα, {σβ = (tnβ , sα)}) where tnα →t

m tnβ .
The main idea of such actions is that they connect HTN sub-
problems depending on if one can reach one subproblem
from the other corresponding to an execution of some task.

Figure 2 illustrates the graph associated with the com-
piled HTN problem described in Section 3 on the alternating
progression search. Rectangular nodes once again represent
subproblems which are now the states of the compiled clas-
sical planning problem and directed edges representing ac-
tions and their effects.

To solve the system viewed as a non-propositional plan-
ning problem, we employ algorithms for weak, strong and
strong cyclic planning in Sections 3 and 4 by Cimatti et al.
(2003). All of them run in polynomial time with respect to
the size of the graph as they search the graph a number of
times to build up a solution.

Now we investigate the complexity of the algorithm by
looking at the runtime of the two main steps: building the
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graph and solving it. As mentioned in the previous para-
graph, solving takes polynomial time with respect to the size
of the graph. Building the graph is a bit more involved given
that we have to check for graph isomorphism for equality of
nodes. If checking for equality was only constant time, then
the time it takes to build the graph is at least exponential
in F as there are exponentially many reachable states, and
bounded above polynomially by the size of TNR. This is be-
cause we can build all 2|F| · |TNR| nodes first then for each
node check which other node is reachable from it. Given that
there are quadratically many directed edges between nodes,
this means that building would take at least exponential time
(polynomial with respect to the number of nodes which is
exponential), in the order of 2|F| · |TNR|.

Now, if we replace equality checking with graph isomor-
phism, we get complexity of order

2|F| · |TNR| · f(maxtn∈TNR
|tn|)

where f(n) denotes the complexity for solving graph iso-
morphism for graphs with n vertices. A safe but loose upper
bound for f is the exponential function with a brute force
algorithm for checking task network isomorphism. In our
membership proofs of certain HTN problem classes later in
Section 4, the order of |TNR| will range from polynomial
to double exponential with the upper bound on the size of a
reachable task network maxtn∈TNR

|tn| being ranging from
polynomial to exponential. This means that the complexity
we will encounter for this algorithm varies between expo-
nential and double exponential.

4 Complexity
This section will cover all the complexity results for our
FONDMP HTN formalism. Due to space constraints, most
hardness proofs will be given as sketches. We show that
weak/primitive problems are equivalent to weak/primitive
problems for FONDFM HTN planning and thus have the
same complexities. For strong and strong cyclic problems
we have that all acyclic, regular, and tail-recursive classes
are made one step harder from their classical counterparts.

We begin by describing how weak and primitive FONDMP

HTN and FONDFM HTN planning problems separately have
the same semantic definitions which in turn means that the
complexity for FOND HTN planning is equivalent as that for
FONDFM HTN from which there exist results by Chen and
Bercher (2021). Specifically, we show that the definitions for
weak solutions are equivalent, and also for strong solutions
when problems are primitive as both formalisms share the
same definitions for domains and problems.
Proposition 4.1. The definitions for primitive FONDMP

HTN and primitive FONDFM HTN planning are equivalent.

Proof. First observe a primitive FONDMP HTN policy no
longer requires instructions for method applications. Thus,
we only need to show that the policies consisting of only
primitive task execution for the respective problems are
equivalent. This can be noticed by viewing weak solutions
for both formalisms as a sequence of tasks that can be ex-
ecuted for favourable nondeterministic effects. Given a se-
quence, a policy can be formed for either formalism.

Corollary 4.2. Let P be a partially (totally ordered) prim-
itive FONDMP HTN problem. Deciding whether P has a
strong or strong cyclic solution is PSPACE-complete (in P).

Proof. We notice that strong and strong cyclic solutions col-
lapse for primitive problems as the same task network cannot
be reached more than once due to the absence of methods.
Then we get our complexity from Prop. 4.1 above and Thm.
4.8 and 5.1 by Chen and Bercher (2021).

Proposition 4.3. The definitions for weak FONDMP HTN
and weak FONDFM HTN planning are equivalent.

Proof. This can be realised by noticing that we can choose
the methods corresponding to a trace of a weak FONDMP

HTN solution for a weak FONDFM HTN solution. Con-
versely, we can construct a weak FONDMP HTN solution by
first expanding the methods for a weak FONDFM HTN solu-
tion and then creating a policy corresponding to a FONDFM

HTN policy for the expanded primitive task network.

As a direct consequence of this, we have that the complex-
ity for weak FONDMP HTN planning is equivalent to that of
weak FONDFM HTN planning by using Thm. 4.1/4.2/4.4/4.5
by Chen and Bercher (2021).

For acyclic problems, we again exploit the fact that since
we will never reach the same task network twice under pro-
gression due to the absence of recursion in compound task
decomposition, strong and strong cyclic solutions collapse.
Although the term acyclic was originally intended to de-
scribe acyclicity of compound task decomposition in the de-
terministic HTN setting, it also happens to be the case that
FONDMP HTN solutions themselves are acyclic.

Theorem 4.4. Let P be a totally ordered acyclic FONDMP

HTN problem. Deciding whether P has a strong or strong
cyclic solution is EXPTIME-complete.

Proof. Membership: we show that the progression algo-
rithm described in Section 3 always terminates and requires
only polynomial space. We exploit the fact that for acyclic
problems we can never reach the same task network and
state pair more than once during progression. This means
that strong and strong cyclic solutions coincide and that
eventually all search nodes will have an empty task net-
work or a rejecting state. Furthermore, we do not need the
variable V to store the progression history. This leaves us
with variables tn, s,M. Clearly, s and M are polynomi-
ally bounded. The size of tn under progression is bounded
in the same way as progression in the deterministic setting
given that decomposition of compound tasks are equivalent.
Thus, we can use Lemma 3.6 by Alford, Bercher, and Aha
(2015) for totally ordered acyclic problems to get that tn is
bounded polynomially. Hence, we have that totally ordered
acyclic strong/strong cyclic FONDMP HTN planning is in
APSPACE = EXPTIME (Chandra and Stockmeyer 1976).

Hardness: we will give a proof sketch on how to give a
polynomial reduction of deciding whether an arbitrary al-
ternating Turing machine (ATM) accepts an input string wI
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Hierarchy Order Classical/Weak Strong Strong cyclic

primitive total P∗/NP [4.3] P∗ [4.2]
partial NP [4.3] PSPACE [4.2]

acyclic total PSPACE [4.3] EXPTIME [4.4]
partial NEXPTIME [4.3] EXPSPACE [4.5]

regular total PSPACE [4.3] EXPTIME [4.6] EXPTIME [4.6]
partial PSPACE [4.3] EXPTIME [4.6] EXPTIME [4.6]

tail-recursive total PSPACE [4.3] EXPTIME [4.7] EXPTIME [4.7]
partial EXPSPACE [4.3] 2-EXPTIME [4.8] 2-EXPTIME∗ [4.8]

arbitrary total EXPTIME [4.3] semi-decidable∗ semi-decidable∗
partial semi-/undecidable semi-/undecidable semi-/undecidable

Table 1: Complexity results for FOND HTN planning. Classes marked ∗ are not complete where only membership is given.
The first column collapses deterministic and weak HTN planning as most weak problems can be determinised and hence have
the same complexity as deterministic planning (Chen and Bercher 2021). Undecidability of results arise from realising that
standard HTNs are a special case of FOND HTNs and undecidable. Semi-decidability results arise from Section 3.

in space k. This will give us APSPACE = EXPTIME-
hardness. The main idea of the reduction is that we ex-
ploit the fact that a polynomially space bounded ATM can
be decided in an exponential number of steps given that
there are at most exponentially many configurations C =
|Q| · (|Γ|+ 1)k · k using k space. We get |Q| from the num-
ber of states, (|Γ|+1)k from all possible length k strings that
can be constructed with the alphabet Γ plus a blank symbol,
and k for the number of locations the tape head can be. We
will define primitive tasks to mimic ATM transitions and use
a task hierarchy to define a task network that can be decom-
posed into exponentially many tasks.

To model ATM configurations and transitions, we first de-
fine facts that represent the tape contents and ATM states
with the same state variables as those in the PSPACE-
hardness proof of non-hierarchical planning (Bylander
1994). We also define similar actions with the modification
where given a ∀ state and an ATM transition, we create a
nondeterministic task with the same number of correspond-
ing effects, whereas in an ∃ state, we create a deterministic
task modelling each effect. This enforces that at a ∀ state, all
the next configurations must be accepting whereas at an ∃
state, we only have to choose one good effect.

To model exponentially many tasks, we construct com-
pound tasks and methods in the same way as in Section 4
by Alford, Bercher, and Aha (2015). For ease of notation,
let n be the smallest number such that 2n ≥ C, the number
of configurations shown to be exponential above. The main
idea of the construction is that we define compound tasks

2k · sim
for 0 < k ≤ n, each with one method which decomposes it
into a totally ordered task network with two tasks mapping
to 2k−1 ·sim. Next, we have 1 ·sim have one method for each
primitive task n decomposing it to tn(n), and one method
decomposing it to tn∅. In this way, we can define an initial
task network tn(2n · sim) which can decompose into up to
any number of tasks bounded exponentially to simulate an
accepting ATM computation as required.

Proving EXPSPACE-hardness using ATMs is not as

straightforward any more as our reduction now has to be
logarithmic. Thus, we can no longer define a fact for each
tape cell which would cause a polynomial reduction and in-
stead we will extend the NEXPTIME-hardness proof for de-
terministic acyclic HTN planning (Alford, Bercher, and Aha
2015) from the reduction of a nondeterministic Turing ma-
chine (NTM) to a reduction of an ATM. The idea of the orig-
inal proof is that we do not define explicit facts to represent
an NTM configuration but instead we only have one state
and tape cell fact true at any time. Totally ordered primitive
tasks are used to represent a witness and use synchronisation
techniques to model and verify NTM transitions. This is be-
cause we can compactly represent k tasks in a task network
with only a logarithmic number of defined tasks for acyclic
problems.

Theorem 4.5. Let P be an acyclic FONDMP HTN problem.
Deciding whether P has a strong or strong cyclic solution is
EXPSPACE-complete.

Proof. Membership: we again use our alternating progres-
sion algorithm from Section 3 and the fact that strong and
strong cyclic solutions collapse for acyclic problems. Also
similarly to the proof of membership of Theorem 4.4, we
do not require the variable V although this is not neces-
sary now as we will provide a time bound. We notice that
the initial task network can be decomposed into a primi-
tive task network with bounded size mk+1 where k is the
maximum stratification of the compound tasks, and m is the
size of the largest task network in the problem as shown in
Corollary 3.2. by Alford, Bercher, and Aha (2015). Thus, the
progression algorithm always terminates and determines if a
solution exists within an exponential number of steps as the
number of methods which can be applied is bounded expo-
nentially and similarly with the execution of primitive tasks.
So the problem is in AEXPTIME = EXPSPACE.

Hardness: we will give a proof sketch on how to give a
logarithmic reduction of deciding whether an arbitrary ATM
A accepts a string wI in time k. We will extend the proof
of NEXPTIME-hardness for deterministic acyclic problems
in Thm. 6.1 by Alford, Bercher, and Aha (2015) which in-
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volved a reduction from an NTM. The idea of the original
proof is to represent a witness for an NTM or a sequence of
strings w0, . . . , wk with exponentially many totally ordered
tasks as described in the proof of Thm. 4.4 above. Each task
asserts a fact representing a tape symbol at a tape cell, of
which only one can be true at a given time. A second se-
quence of totally ordered tasks are synchronised with these
tasks to check whether the ith character of strings wj and
wj+1 are equivalent. A third totally ordered sequence is used
to keep track of the tape head and determine transitions. In
this way, the transformed problem is able to generate any
witness for the NTM with input wI and only yields a solu-
tion if the witness is indeed a proof for the original problem.

The modification we describe is by introducing additional
nondeterministic tasks to model ATM transitions. In the
original proof, there exist deterministic step∃ tasks for each
nondeterministic effect of each nondeterministic transition
in the first totally ordered sequence of tasks. We can intro-
duce additional nondeterministic step∀ tasks which model
universal ATM transitions. To make this work, we have the
additional ATM assumption that at a given universal state,
all transitions step in the same direction in order for the
synchronisation process to still work. This can be compiled
away by introducing additional states and deterministic tran-
sitions which take an ATM state back to its intended po-
sition after every universal transition. The correspondence
of solutions still holds as a strong solution holds iff a com-
putation tree exists for A determining that the initial con-
figuration is accepting. This comes from being able to dy-
namically choose the correct decompositions in the second
and third task sequences for verifying a computation tree in-
duced by the first sequence of tasks. Thus, the problem is
AEXPTIME = EXPSPACE-hard and complete.

We exploit the fact that FONDMP HTN planning is able
to model non-hierarchical nondeterministic planning whose
complexity we know. The idea of the reduction is that we
can define a compound task which can decompose into ar-
bitrarily many primitive tasks corresponding to actions for a
non-hierarchical planning problem.

Theorem 4.6. Let P be a regular FONDMP HTN prob-
lem. Deciding whether P has a strong or strong cyclic solu-
tion is EXPTIME-complete. The decision is also EXPTIME-
complete for totally ordered problems.

Proof. Membership: we use the bounded graph search algo-
rithm described in Section 3 and recall that the set of reach-
able task networks for regular problems is bounded expo-
nentially. This is also true for the number of states such that
the size of S and hence the size of the problem to solve is
exponential. Since the subroutine to solve strong or strong
cyclic plan existence is polynomial with respect to the size
of the graph, the problem is in EXPTIME.

Hardness: we model non-hierarchical planning problems
with regular FONDMP HTN problems in the same way de-
scribed for the deterministic case (Erol, Hendler, and Nau
1996). The main idea is that we create a compound task
repeat which has a method for every action in the original
problem decomposing into a totally ordered task network

with a task corresponding to such action followed by repeat.
We also add a task done with precondition the goal condi-
tion. The only extension from the original proof is that we
are able to model nondeterministic actions using nondeter-
ministic tasks. The reduction mimics the mechanics of the
original problem so strong and strong cyclic solutions corre-
spond. It was shown by Rintanen (2004) that plan existence
for both strong and strong cyclic planning is EXPTIME-
complete by reduction from ATMs. Hence, the problem in
question is EXPTIME-hard and complete.

Theorem 4.7. Let P be a totally ordered tail-recursive
FONDMP HTN problem. Deciding whether P has a strong
or strong cyclic solution is EXPTIME-complete.

Proof. Membership: we will again use the bounded graph
search algorithm provided in the Search Algorithms section
and show that it runs in exponential time. To do this, we
show that the number of reachable task networks under pro-
gression is only exponential. First, we have from Lem. 3.6
by Alford, Bercher, and Aha (2015) that under progression
of a totally ordered tail-recursive HTN problem P , a task
network is bounded polynomially by m = k + r · h for k
initial tasks, r the largest number of tasks in any method for
P and h the height of the stratification on compound tasks.
Note that although we are in the nondeterministic setting
now, the bounds calculated for deterministic HTN problem
carry over as the decomposition mechanics are the same.

Thus, letting n = |NP ∪NC | be the number of task
names in P , the number of reachable task networks is
bounded exponentially by

∑m
i=0 i

n ≤ (m+ 1)mn.
The sum arises from counting the number of task net-

works of size i for 0 ≤ i ≤ n and the in from choosing
any of n task names for each task in a totally ordered task
network. Hence, the graph we build in the search algorithm
has at most nm·2|F| nodes. Building and searching the graph
takes exponential time, and thus so is the runtime of the al-
gorithm.

Hardness: given that regular problems are a special case
of tail-recursive problems and that totally ordered regu-
lar strong and strong cyclic HTN planning is EXPTIME-
complete, we have EXPTIME-hardness for totally ordered
tail-recursive strong and strong cyclic HTN planning.

Theorem 4.8. Let P be a tail-recursive FONDMP HTN
problem. Deciding whether P has a strong or strong cyclic
solution is in 2-EXPTIME. Determining existence of a
strong cyclic solution for P is EXPSPACE-hard and a
strong solution is 2-EXPTIME-hard and hence complete.

Proof. Membership: again we use the bounded graph search
algorithm but now the upper bound for reachable task net-
works is higher given that there is no longer any total order
assumption. From Lemma 3.4 by Alford, Bercher, and Aha
(2015), now the size of a task network under progression is
bounded exponentially bym = k·rh with variables the same
as described in Theorem 4.7. Thus, letting n be the number
of task names, the number of reachable task networks is up-
per bounded by |TNR| ≤

∑m
i=0 i

n · f(i), where f(i) counts
the number of directed acyclic graphs for i labelled vertices.
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Again, in gives a loose upper bound for calculating the num-
ber of reachable non ordered task networks of size i, and the
function f then gives us the number of possible partial or-
derings for size i task networks with names attached given
that partial orderings are synonymous with directed acyclic
graphs. We can provide a loose closed form upper bound
for the number of DAGs by counting the number of directed
graphs: f(n) ≤∑n2

i=0

(
n2

i

)
= 2n

2

. This follows by noticing
that there are at most n2 directed edges for n vertices and
that there are

(
n2

i

)
ways of choosing i edges for building

a directed graph with i edges. Thus the number of reach-
able task networks is bounded by |TNR| ≤

∑m
i=0 i

n · 2i2 ≤
(m+ 1) ·mn ·2m2

. Since m is exponential, we have that the
size of the graph is bounded double exponentially and hence
the algorithm itself takes double exponential time to run.

Hardness: for strong cyclic problems, this follows from
the fact that the deterministic version of the problem is
EXPSPACE-complete (Alford, Bercher, and Aha 2015) and
is a special case of nondeterminism. For strong problems, we
extend the EXPSPACE-hardness proof for deterministic tail-
recursive problems in the same fashion as described in Theo-
rem 4.5 to get AEXPSPACE = 2-EXPTIME-hardness.

5 Conclusion
In this paper we propose an alternate formalism for FOND
HTN planning, with differences to previous work lying in
how method decomposition is considered: at plan gener-
ation or execution. Our formalism provides more flexible
solutions at the cost of plan execution complexity. Specif-
ically, by integrating method choice into a plan we create a
richer class of solutions but such solutions have two weak-
nesses: (1) policies for strong cyclic solutions are potentially
unbounded (in contrast to non-hierarchical planning where
policies are bounded by the number of reachable states), and
(2) generally, policy execution is hard as we need to perform
graph isomorphism checks to receive instructions.

We also provide basic search algorithms and many tight
complexity results for existing HTN problem subclasses and
show that problems with some restriction on recursion of
compound tasks are only made at most one class harder
when nondeterminism is introduced. This arises from the
existence of natural extensions of algorithms and reductions
for standard HTN planning using alternation.
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Murdock, J. W.; Wu, D.; and Yaman, F. 2005. Applications
of SHOP and SHOP2. IEEE Intell. Syst. 20(2): 34–41.
Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN Planning
System. JAIR 20: 379–404.
Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
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Abstract

This paper focuses on presenting a complex real-world plan-
ning application based on a rescue mission. While tempo-
ral hierarchical planning seems to be a promising solution to
such a class of problems, given its ability to consider experts’
knowledge and dissect the search space, many major chal-
lenges of complex real-world planning problems are not ad-
dressed yet formally, i.e. recursive decomposition to achieve
a goal state, optimization of utility functions defined for ab-
stract tasks, and optimal allocation of tasks to multiple actors.

1 Introduction
Hierarchical planning has proven to be useful in solv-
ing many real-world planning problems (Bercher, Alford,
and Höller 2019), ranging from web services (Sirin et al.
2004) to medical applications (Fdez-Olivares et al. 2019),
robotics (Hayes and Scassellati 2016; Jain and Niekum
2018), and aviation (Benton et al. 2018), to name just a few.
Its wide usability owes to its similarity with the task plan-
ning humans practise, which usually regards first the plan-
ning of tasks at a higher abstraction-level, followed by the
refinement of each task down to an executable level. The
hierarchical task network planning paradigm can therefore
encode naturally known “recipes” for the decomposition of
higher-level tasks. Furthermore, by doing so, problem solv-
ing is simplified, either by considering a lower-resolution
state space at the higher abstraction levels, or by consider-
ing a limited search space1. This advantage has also been
leveraged by Kaelbling and Lozano-Pérez (2011) and Patra
et al. (2020), for example to develop hierarchical planners
that manage to cope with non-deterministic and dynamic en-
vironments. The common driving idea behind is to plan at
a more abstract level and leave the details (i.e. lower-level
plan) be decided once the knowledge on the environment
becomes “clearer”. Given their ability to include experts’
knowledge and reduce search space, hierarchical planners
are promising to solve even more complex real-world plan-
ning problems. This paper presents one challenging scenario
based on a large-scale rescue mission.

1Search space reduction is possible since HTNs allow to restrict
search in directions anticipated by the expert, though in general no
bound on the search space exists since the HTN framework allows
to express undecidable problems (Erol, Hendler, and Nau 1996).

There are many formalisms centered around the idea of
hierarchical planning, where “pure” HTN planning is only
one, together with other extensions, such as HTN planning
with task insertion, Hierarchical Goal Network planning,
etc. (Bercher, Alford, and Höller 2019). One of such exten-
sions of major importance for practical applicability of the
formalism is featuring time – though only few formalisms
and existing planning approaches support it. Works by Gold-
man (2006) (durative planning with SHOP2), Molineaux,
Klenk, and Aha (2010) (SHOP2PDDL+), Fdez-Olivares
et al. (2006; 2019) (complex mission and multi-agent plan-
ning), Dvor̆ák et al. (2014) and Bit-Monnot, Smith, and Do
(2016) (the FAPE planner), as well as by Stock et al. (2015)
(for robotics) are some of these exceptions. Furthermore, a
unifying formalism featuring time does not yet seem to be
available. In the context of the recent International Planning
Competition (IPC) 2020 for HTN planning (Behnke et al.
2019), HDDL (Höller et al. 2020a), the proposed common
standard for describing HTN problems, also does not sup-
port time (yet). The Action Notation Modelling Language
(ANML) (Smith, Frank, and Cushing 2008) focuses on time,
but it has not been integrated into HDDL; its semantics is
also incompatible with recursion, which is an inherent fea-
ture of many HTN planning task models. Besides, its ability
to model problems with the need for optimal allocation of
tasks to actors, comparable to approaches used for solving
multi-vehicle routing problems (MVRPs)2 is unclear.

For practical real-world use cases we see the support of
time as one of the major requirements. This will require both
1) an adequate and easy to use modelling language (poten-
tially complemented with adequate modelling support), and
2) planning systems able to find solutions efficiently, which
goes beyond just supporting time technically – it requires
new or improved heuristics, or techniques, depending on the
respective approach chosen to tackle the problem.

Another challenge that we foresee is how utility func-
tions are being handled, and which kinds of plan metrics are
supported. Furthermore, real-world use cases involve often
more than one “executor” of the plan, which renders plan-

2In a MVRP, vehicles are assigned tasks at different loca-
tions (Beck, Prosser, and Selensky 2003). It is often implicitly im-
plied that vehicles with the ability to perform the task are inter-
changeable, and that each task is assigned to only one vehicle (and
will be a goal aimed to reach by the corresponding vehicle).
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ning even more complex. Hierarchical planning can be ben-
eficial in this case given its ability to simplify the problem by
leveraging experts’ knowledge and by dissecting the search
space, a concept adopted by Kiam et al. (2019; 2021) to
develop a domain-specific planner that computes plans for
multiple Unmanned Aerial Vehicles (UAVs) tasked to mon-
itor dissected ground locations in a dynamic environment.

In the following, a real-world temporal hierarchical plan-
ning problem (with nested MVRPs) based on a complex
rescue mission will be presented. Challenges posed by this
class of problem will be analysed and a more formal repre-
sentation of the problem will be provided to facilitate a more
thorough understanding of the problem, allowing thereby
the scaling of complexity (i.e. introducing more tasks, ac-
tors, complex goal conditions, and utility functions).

2 A Real-World Problem Example
Hierarchical planning is convenient for describing real-
world complex planning problems, especially problems that
rely on operational rules or experts’ knowledge. Rescue mis-
sions are a typical example in which leveraging hierarchi-
cal planning can be beneficial, as argued in some previous
works (Biundo and Schattenberg 2001; Fdez-Olivares et al.
2006; Patra et al. 2020). The section presents a real-world
planning problem based on a rescue mission, the challenges
of which are either omitted or only partially considered in
these works. Fdez-Olivares et al. (2006) consider in their
SIADEX planner temporal reasoning. While this is not con-
sidered by Patra et al. (2020), the interaction between plan-
ning and acting is making it possible to consider the dynam-
ics of the environment.

Figure 1a depicts an example use case of a realistic and
complex rescue mission after a disaster (e.g. earthquake)
involving multiple rescue teams of different capabilities.
Marked in blue is a disaster-struck area3; different locations
within the area that require rescue operations are marked in
orange, while the different objects (e.g. buildings, clusters
of victims, etc.) within a location are marked with stars, the
sizes of which also indicate the complexity (or rather the du-
ration) of the rescue tasks to be performed. The capabilities
of the rescue teams as well as the team members are listed in
Table 1. Note that the number of each type of team member
(i.e. humans, robots, UAVs) varies in each team.

Part of the task network structure is depicted in Fig-
ure 1b. Due to the number of locations (?l) to attend to
within a disaster area, and the number of objects or pa-
tients to cope with at each location, a time-dependent MVRP
must be considered in the decomposition of the high-level
task clear-earthquake-disaster(?a) to decide
for the order the locations will be cleared, i.e. the order in
which the clear(?l) tasks will be performed. Depend-
ing on the need, and on the best practices, different tasks are
needed for each location (see the two example decomposi-
tions of clear(?l), in which one location needs triage
triage(?tt ?l) and medical aid aid(?met ?l) af-
ter having monitored the location with monitor(?mot
?l), while the other requires only an infrastructure team to

3There can be more than one disaster areas.

Rescue team Team members
Monitoring, ?mot {h1,...,hH u1, ...uU, r1,...,rR}
Triage, ?tt {h1,...,hH , r1,...,rR}
Medical, ?met {h1,...,hH}
Infrastructure, ?it {h1,...,hH, r1,...,rR}

Table 1: Rescue teams and their heterogeneous capability, as
well as the various team members, i.e. robots ri, human hi
and UAVs ui

attend to structural damages build(?it ?l)). Addition-
ally, as there are several objects within a location, decompos-
ing the task monitor(?mot ?l) for example into more
“refined” tasks to be performed by the team members (i.e.
patrol(?h ?o) by a human ?h, drive-by(?r ?o)
by a robot ?r, and fly-over(?u ?o) by a UAV) is
again a time-dependent MVRP.

To solve such planning problems, the temporal aspect
must be considered, so that the execution of concurrent
tasks by different actors are possible, while managing the
resources. Besides, such planning problems also pose sev-
eral new challenges listed below, which, to the best of our
knowledge, were either not considered before or do not yet
have a straightforward or commonly accepted solution.

• The recursive decomposition into subtasks: The de-
compositions of the compound tasks, for instance
clear-disaster-area(?a) and monitor(?mot
?l) terminate only if the subtasks altogether achieve
the goals imposed by the compound tasks. For
clear-disaster-area(?a), the decomposition
terminates once all locations ?l within the area ?a are
cleared, while for monitor(?mot ?l), the decom-
position terminates after all objects ?o within the loca-
tion are attended to by either the human first respon-
der patrol(?h ?o), a robot drive-by(?r ?o) or
an UAV fly-over(?u ?o). One way to achieve this is
by employing a recursive decomposition, if the number of
locations is known at planning time. However, recursive
decomposition is not yet very well studied or supported in
temporal hierarchical planning. Furthermore, if the exact
number of locations is unknown at planning time, such as
in a framework where planning and acting interleave4 (see
following subsection), or if the knowledge on the number
of locations changes due to updates of information, there-
fore requiring plan repair (see following subsection), such
recursive decomposition is even less straightforward.

• Finding a plan that is optimal with respect to the under-
lying utility functions: Utility functions such as number
of lives saved, cost of structural damages, cost of time,
etc. can often only be defined intuitively by the domain
expert at a higher abstraction level, i.e. aid(?met ?l)
for the lives saved and build(?it ?l) for the cost of
structural damages. However, the exact evaluation of the
utility functions can only take place once the decomposi-

4This is considered by Patra et al. (2020). However, the tempo-
ral aspect is ignored.
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(a) Illustration of an example scenario during a rescue mis-
sion with the polygons in orange within the blue disaster
area depicting the locations where rescue teams are needed. (b) Decomposition of abstract tasks

Figure 1: An example application for hierarchical planning with nested multi-agent routing problems.

tion is performed down to the level of the primitive tasks.
The propagation of utility can therefore be challenging in
the formalism for this class of hierarchical planning prob-
lems. Furthermore, determining heuristics capable of op-
timizing different utility functions can also be a challeng-
ing issue. The challenge is even more amplified if multiple
objectives are to be considered, such as by Kiam, Besada-
Portas, and Schulte (2021). Solving it using a hierarchi-
cal planning approach is feasible in a domain-dependent
manner, but to the best of our knowledge, the feasibility of
solving such a class of problems in a domain-independent
fashion still remains unknown.

• The allocation of subtasks to actors: This is relevant
for example in the decomposition of monitor(?mot
?l), where the subtasks can be allocated to humans
patrol(?h ?o), robots drive-by(?r ?o) and
UAVs fly-over(?u ?o). The optimality of the allo-
cation depends on the utility function; its implementation
can be challenging with respect to the formalism or mod-
elling language and the heuristics.

Besides rescue missions, maintenance of a building com-
plex, managing large-scale construction work, or complex
logistic problems have similar planning requirements, in-
volving on the one hand hierarchical decomposition of tasks,
and on the other, nested time-dependent MVRPs.

Flexible Planning Framework
The above describes only the planning domain and the plan-
ning problem in a static fashion. The knowledge of these
is insufficient to solve the planning problem, as this must
be solved within a framework that adopts a carefully engi-
neered architecture capable of coping with the flow of infor-
mation on the (dynamic) state space. Concretely, the plan-
ning problem can or must be solved in different manners:

• Offline planning: this mode of planning will force the
computation of a complete plan with the knowledge as-
sumed before plan execution. Although the plan will be
suboptimal since the dynamics of the environment are not

considered at planning time, this mode of planning is still
useful as an initial overview for resource management.

• Planning and acting: Patra et al. (2020) worked on a plan-
ning architecture capable of interchanging between off-
and online planning to take into account the dynamics of
the environment observed in the course of “acting” (i.e.
while carrying out the actions). By doing so, abstract tasks
that need not be performed immediately do not have to be
decomposed immediately. The decomposition of the task
network follows a forward and top-down manner. This
kind of framework is convenient when future tasks only
need to be planned as an “anticipatory” measure, but de-
tailed action plan is not required immediately.

• Plan and plan repair: This type of planning framework ex-
ploits full-fledged offline planning with the information
on the state space known before plan execution, yet must
be flexible enough to allow for plan repair as new infor-
mation becomes available during plan execution. How-
ever, plan repair is not always straightforward in hierar-
chical planning, since the execution of a method’s task
network cannot be aborted and “skip” to the execution of
another task network without reversing some effects in-
curred in the course of the execution of the aborted task
network. The permission to “skip” to another task net-
work is often unknown to the planner, as the modelling
of all possible plan repair cases would require much more
extensive expert knowledge. One possible solution would
be to annotate which methods are merely “advice” on how
to solve a task (and may be skipped without negative con-
sequences), and which methods actually carry semantics
so that a true refinement needs to be found (which implies
that it cannot just be skipped). The former repair approach
was for example exploited by Goldman, Kuter, and Freed-
man (2020), while the latter was described by Höller et al.
(2020b); but we are not aware of any combination.
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3 A More Formal Representation of the
Planning Problem

In this subsection, we provide a first attempt for a more
formal problem representation of the problem(s) outlined
before. However, this does not yet incorporate the dynam-
ics of the world. The planning problem is defined by a
tuple P = (Xp, Xn, A,A

′, Tp, Tc,M, sI , tnI , G, U, α, α
′),

where Xp and Xn are the sets of propositional and numeric
state variables respectively, A is the set of actors perform-
ing primitive tasks (also called actions), A′ is the set of
actor-sets, which group actors in teams (e.g. a monitoring
team ?mot is an element of A′), a′ ∈ A′ is a set of actors
{a1, ..., a|a′|} with |a′| being the cardinality of the set a′,
ai ∈ A, and Tp is the set of tuples (tp, δmin, δmax) contain-
ing the primitive task (or action), as well as its minimum and
maximum durations respectively, Tc is the set of compound
(or abstract) tasks, M is the set of methods to decompose
compound tasks into substasks, sI is the initial state, tnI
is the initial task network, G is the set of goal conditions
which define the state(s) to achieve within a time window
or before a time instant, and U is the set of utility functions
with respect to the (abstract or primitive) tasks. α and α′

denote functions that map an actor a ∈ A (and a set of ac-
tors a′ ∈ A′ respectively) to a tuple (tp, δmin, δmax) ∈ Tp
(and an abstract task tc ∈ Tc respectively), where tp (and tc
respectively) are primitive task (and compound task respec-
tively) that the actor a (and a′ respectively) can perform.

A solution to the planning problem is a set of plans, i.e.
π = {πa1 , ..., πa|A|}, where each plan πa is a partially or
totally ordered set of actions with their associated time con-
straints for actor a ∈ A.

As mentioned in Section 2, depending on the availability
of information, the knowledge about the environment can be
updated before the planning loop terminates (i.e. in planning
and acting), or after the termination of planning and dur-
ing the plan execution (i.e. plan repair is required). In these
cases, this formal representation may no longer be adequate.

4 Expected Features of Future Planners
In this section, expectations on the temporal hierarchical
planners to be developed as solutions to the underlying chal-
lenges described in Section 2 and 3 will be discussed.

Modelling Language
In order to build on each other’s domain-independent rea-
soning and planning methodologies, which can be based
on heuristics, compilation-based or grounding techniques,
a common formalism and modelling language are neces-
sary. In view of this, HDDL was developed by Höller
et al. (2020a) and used as input language (directly or trans-
lated further) for the HTN track of the IPC 2020. How-
ever, HDDL does not consider temporal planning aspects.
Recent previous works by Fernandez-Olivares and Perez
(2020), Bit-Monnot et al. (2020) and Stock et al. (2015)
include temporal information; however, they employ differ-
ent problem modelling languages. Fernandez-Olivares and
Perez (2020) use the Hierarchical Planning Description Lan-
guage (HPDL) for modelling the hierarchical planning prob-

lem coupled with a temporal reasoning engine, while Bit-
Monnot et al. (2020) use ANML developed by Smith, Frank,
and Cushing (2008), and Stock et al. (2015) use a cus-
tomized domain modelling language that enables the expres-
sion of temporal constraints such as start time and duration
of tasks.

Therefore, the underlying challenge with respect to the
modelling language is to first properly define the formalism
for this class of temporal hierarchical planning problems (as
described in Section 2) in a more general sense, followed
by the development of a syntax capable of taking into ac-
count specifically the challenging aspects listed in Section 2,
namely the recursive decomposition into subtasks, consider-
ation of utility functions, and the allocation of subtasks to
actors (or sets of actors).

Planning System
In AI planning, the development of modelling languages is
parallel to the development of the planning system. Besides
the qualitative assessment on the adequacy of the modelling
language to model the class of planning problems described
in Section 2, as well as the correctness of the formalism, a
systematic and quantitative assessment of the planning sys-
tem ought to be considered too. The planning efficiency can
be assessed by scaling the problems with respect to the num-
ber of tasks, the number of actors, as well as the depth of
the task network. Besides, the plan quality can be assessed
according to the defined utility functions. These can be lin-
ear and non-linear functions, or even more complex mathe-
matical equations such as the Bellman equation considered
by Kiam, Besada-Portas, and Schulte (2021), adapted from
Boyan and Littman (2000).

Flexible Planning Framework
As described in Section 2, a planning problem can be solved
in different manners. Besides the most straightforward of-
fline planning framework, planners must also be compati-
ble with a framework that requires interchanging of off- and
online planning to cope with the dynamics of the environ-
ment, as well as plan repair, which requires extensive work
on the merging of task networks, involving even interaction
with human expert(s) to retrieve additional information on
the problem models to perform a correct merging.

5 Conclusion
Besides a descriptive overview on a complex temporal hi-
erarchical planning problem, this paper also describes the
challenges related to such a class of problems, which must
be solved with 1) a proper definition of the formalism, fol-
lowed by the development of a rigorous problem modelling
language, and 2) domain-independent planning systems that
support the the modelling language and solve the problem
efficiently. For wider usability, the planner must also cope
with different planning frameworks, allowing an interleav-
ing of planning and acting, as well as a plan repair.

Our main motivation is to make aware of the unresolved
challenges in hierarchical planning that will require collec-
tive efforts if such a class of problems is to be solved in a
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domain-independent fashion. One way to promote research
interest is to gradually include subsets of the aforementioned
challenges in future IPC tracks on HTN planning.
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F. 2006. Bringing Users and Planning Technology Together.
Experiences in SIADEX. In Proceedings of the 16th ICAPS.
Fdez-Olivares, J.; Onaindia, E.; Castillo, L.; Jordán, J.; and
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Abstract

Hybrid planning is essential for real world applications, as it
allows for reasoning with different forms of abstract knowl-
edge, such as time, space or resources. This unavoidably leads
to a combinatorial explosion of the search space that has pre-
viously been tackled using a hierarchical task network (HTN)
planning approach. Existing HTN planners mostly focus on
finding a solution as fast as possible, with only recent work
considering length-optimal solutions. In real world scenarios,
it can easily happen that the environment changes before a
plan is fully executed. We are motivated to conduct planning
in such a way that the solution has the best chance of with-
standing such changes in the environment. We call this ability
the robustness of a solution. Defining robustness, however, is
an inherently difficult challenge, as many different forms and
notions exist. In this paper, we start the discussion by outlin-
ing a possible notion of robustness recently introduced in the
light of Qualitative Spatial Reasoning (QSR) within the scope
of hybrid hierarchical planning.

Introduction
We are interested in the question of how to do robust plan-
ning in the face of a dynamic execution environment. Exist-
ing planners are able to quickly derive a plan given a valid
domain and problem file. In the real world, however, we
deal with a high degree of uncertainty. Some events may
take longer than anticipated or other (dependent) objects in
the scene may have moved and thus are not available on the
same conditions as during the initial planning phase.

Traditionally, classical planning is concerned with finding
a sequence of actions that lead to a desired goal state (Ghal-
lab, Nau, and Traverso 2016). Actions for this matter are
defined in a specific domain file, stating at least their precon-
ditions and effects. Intuitively, an action a is only applicable
in a state s if all its preconditions are satisfied. However, in
practical applications it is usually not enough to only state
static preconditions and effects and indirectly impose an or-
dering constraint on the possible actions. Other aspects, such
as a sense of time, the spatial characteristic of the scenario,

*We would like to thank the anonymous reviewers for their in-
sightful feedback. This research is partially supported by BMBF
AI lab dependable intelligent systems.

physical restrictions in movements or resource limitations
often have to be considered.

In order to reason about all those different classes of
knowledge, the notion of meta-CSP has been introduced
(Mansouri and Pecora 2016). It formulates an abstract high-
level Constraint Satisfaction Problem (CSP) which is solved
using a meta-reasoner combining dedicated reasoners for
each of the different types of knowledge. All different view-
points (e.g., spatial, temporal, or resource) can then be mod-
eled within one reasoning framework by defining a con-
straint in the meta-CSP. One challenge in such a meta-CSP is
the combinatorial explosion of the search space. To still use
this approach in planning, a hierarchical planning approach
has been considered to systematically reduce the scope and
computational complexity (Stock et al. 2015).

Hierarchical Task Network (HTN) planning differs from
classical planning in that it distinguishes between primitive
and compound (or abstract) tasks. Instead of defining a spe-
cific goal state and let the planner find applicable actions
leading to a plan, in HTN planning a (series of) compound
task(s) is given and then decomposed into executable prim-
itive actions. The planner here tries to find an applicable
decomposition. Many extensions and varying realizations
within the hierarchical planning framework have been con-
sidered (cf. Bercher, Alford, and Höller (2019)).

Like Stock et al. (2015), we are motivated to apply ab-
stract reasoning in the context of HTN planning. Stock et al.
(2015) transform the HTN planning problem into a CSP
by encoding causal links of the HTN problem as so-called
meta-constraints into the aforementioned meta-CSP. Note
that this is similar to the combination of HTN planning with
Partial Order Causal Link (POCL) planning (Schattenberg
2009; Bercher et al. 2016), which builds into many current
hierarchical planners (Bercher 2021).

The meta-CSP formulation allows for abstract reasoning
not only within the task network, but for example also about
space, time and resource constraints. Reasoning about ab-
stract spatial and temporal information is usually done us-
ing Qualitative Constraint Networks (QCNs) (Ligozat 2013;
Dylla et al. 2017). In this context, Sioutis, Long, and Jan-
hunen (2020) recently studied a notion of robustness, which
concerns the perturbation tolerance of QCN solutions, i.e.,
their likelihood to resist a change in the environment.
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Figure 1: A train network with five stations and multiple
paths leading from the start s1 to the destination s3

Robustness itself certainly is not a new concept, and can
probably be traced back even to the first algorithms for prob-
lem solving, as with different methods to obtain a solution
to a given problem, there was also the need to compare
those solutions on a (usually robustness-related) basis (see
for example Ginsberg, Parkes, and Roy (1998); Verfaillie
and Jussien (2005)). Still, the work by Sioutis, Long, and
Janhunen (2020) was the first time robustness as a measure
was considered in QCNs. Likewise, to the best of our knowl-
edge, the same holds for constrained reasoning in the con-
text of hybrid hierarchical planning, where no measures of
robustness have been established so far.

This paper contributes by pointing out the challenge of
defining robustness in the scope of hierarchical planning,
starting a discussion towards more robust solutions in HTN
planning. We demonstrate our motivation and its usefulness
in the context of a train routing problem. Following the work
by Mansouri and Pecora (2016) and Stock et al. (2015) on
modelling HTN planning in a meta-CSP, we establish sim-
ilarities to QCNs and indicate how the notion of robustness
from Sioutis, Long, and Janhunen (2020) may be applied.
This may be seen as a first starting point for further work on
robustness in hierarchical planning.

Robustness
Let us consider the simple train network depicted in Fig. 1,
which, for the sake of our example, encodes the following
planning task: Given n trains t1, . . . , tn with the goal to
drive from station s1 (start) to s3 (destination). Driving a
train from one station to another is a complex task on its
own, where multiple signals have to be adhered, speed has
to be adjusted accordingly, the tracks have to be monitored,
etc. (see Cardellini et al. (2021) for a recent formulation of
a similar problem in PDDL+). For the sake of the example,
we are for now abstracting from the details of said driving
process and only focus on the high-level decisions of which
train has to drive to which station at what time. We are es-
sentially reducing the problem such that given n trains in a
specified order, we try to find a viable route for each train
trough the network from the start to the destination. As ad-
ditional constraint, trains may only traverse in the direction
indicated by the arrow, i.e. reversing is not permitted.

Assuming a constant driving time between stations and
enough distance between incoming trains, the fastest and
thus likely preferred choice would be to use the direct path
via only station s2 for all trains. The problem with this route
is that once started at s1, there is no turning point and no

alternative route to switch to. If there occurs any form of
delay on a preceding train on this route, this unavoidably af-
fects all other trains. Likewise, if a part of the track between
s2 and s3 has to close temporarily, e.g., because of an animal
accident, no alternative path exists.

Uncertainty in the plan execution is the reason why cur-
rent work in railway planning increasingly focuses on ro-
bustness in the quality of solutions to a given planning prob-
lem, such as the one outlined above. Here, a plan may be
considered robust if it is able to withstand such unexpected
changes in the environment. Accordingly, robustness can be
defined as the ability of a system to resist change (Verfail-
lie and Jussien 2005; Lusby, Larsen, and Bull 2018). Note,
however, that based on the context also other notions of ro-
bustness exist. One can further differentiate between flexi-
ble and robust solutions to a problem (Verfaillie and Jussien
2005; Muise 2014). A flexible solution is anything that can
quickly generate a new solution in case of change, whereas
a robust solution has every chance to resist all possible
changes given by a model. Hereby, it is not only important
how possible changes are modeled (qualitative or quantita-
tive, probabilistic or not), but also when those changes are
available to a planner (before or during plan execution). De-
pending on those characteristics, different notions of robust-
ness may be applicable.

For example, reacting dynamically to a sudden change in
the environment, such as a technical disturbance that pre-
vents a train from reaching its next station, requires the use
of some form of execution monitoring (Fritz 2009; Muise
2014). Thereby, it is actively observed whether the executed
plan remains valid, given what is known in the current state.
Muise (2014) defines a plan in classical planning valid, iff
the plan is executable in the initial state I and results in
the goal state G. In contrast to such a sequential plan, the
least-commitment approach followed in partial-order plan-
ning promises more flexibility during execution, as some or-
dering choices can be delayed until run-time. A partial-order
plan (POP) is valid iff every linearization achieves the goal
from the initial state, clearly a strong requirement if we are
only interested in finding a possible way to achieve the goal.
More practically, a POP is called viable iff there exists a lin-
earization that achieves the goal, which may be efficiently
found by exploiting state relevance. Robustness may then
be achieved by actively monitoring the execution of the plan
and always selecting the most relevant partial plan fragment
for achieving the goal.

Similarly, in the context of hierarchical planning, Patra
et al. (2020) apply a UCT-like Monte-Carlo tree search pro-
cedure called UPOM, an online planner for the Refinement
Acting Engine (RAE) (Ghallab, Nau, and Traverso 2016),
to guide the selection of a method instance in case multiple
ones for a task exist. The RAE can not only accomplish tasks
but, like execution monitoring, also react to external events.

While the outlined planning approaches can consider
changing environments and to an end possess the capabil-
ity to include robustness, they may only be able to really
include one notion, e.g., probabilities or qualitative infor-
mation might not be considered. Also, they do not directly
incorporate robustness as a measure before plan execution.
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Case Study: Meta-CSPs
In what follows, we elaborate on a notion of robustness
in the context of hybrid hierarchical planning using meta-
CSPs, drawing on prior work by Sioutis, Long, and Jan-
hunen (2020) in the context of QCNs. We start by briefly
presenting some frameworks that are relevant to our discus-
sion and that we will be referring to throughout the paper.

Constraint Satisfaction Problems
We adopt the standard notation of a CSP from Russell and
Norvig (2020). A CSP is a tuple (X,D,C) where
• X is a set of variables {x1, . . . , xn}, where each variable
xi ∈ X corresponds to exactly one domain Di ∈ D,

• and C is a set of constraints that restrict possible value
assignments to variables.
An assignment that does not violate any constraints is

called a consistent assignment. Solving a CSP now is the
task of finding a consistent, complete assignment for all vari-
ables. A CSP is often visualized using a constraint graph
G = (V,E), where the vertices V represent variables and
the edges E define constraints between any two variables.

Qualitative Constraint Networks
Reasoning on infinite domains, such as space and time,
is typically done using Qualitative Constraint Networks
(QCNs) (Ligozat 2013; Dylla et al. 2017). Similar to a con-
straint graph for a CSP, a QCN is a network where the ver-
tices represent spatial or temporal entities and the edges are
labeled with qualitative spatial or temporal relations, based
on a finite set of jointly exhaustive and pairwise disjoint re-
lations, called the set of base relations B.

Hybrid Planning
Autonomous systems, such as robots, typically operate in
dynamic environments. Planning in such an environment is
particularly difficult as many different forms of knowledge,
such as temporal, causal or spatial information and con-
straints, have to be considered. Motivated by those needs of
real world applications, hybrid planning methods have been
studied. Hybrid planning in this context describes a classi-
cal planner that instead of focusing on one particular type
of constraint can reason with multiple classes of knowledge.
Note that the notion of hybrid planning has also been used
in the context of combining hierarchical with state based
Partial Order Causal Link (POCL) planning (Schattenberg
2009; Bercher et al. 2016).

For hybrid reasoning, Mansouri and Pecora (2016) have
proposed the use of a so-called meta-CSP. Here, fluents are
used to represent causal, temporal, spatial or resource se-
mantics. A fluent may be used to represent an action (e.g.
“drive”) or display the current situation (“a train is at the
station”). Given a set of fluents F and a set of constraints C
among the fluents in F , we can define a constraint network
as the pair (F , C). Note that this is similar to the nota-
tion used for a CSP, with fluents being the variables of a
heterogeneous set of domains. Now, we can cast the prob-
lem of finding a feasible plan as a meta-CSP, i.e. a high-
level CSP that captures the heterogenous information of the

overall problem, and is defined as a collection of meta-
constraints. A meta-constraint is a triple (M,Ξ,∆), where
M = (F , C) is a constraint network, Ξ is a set of meta-
variables {ξ1, . . . , ξn}, each of which is a subnetwork ofM ,
i.e. ξi = (Fi ⊆ F , Ci ⊆ C), and ∆ = {δ(ξ1), . . . , δ(ξn)}
is a set of domains, one for each meta-variable.

Encoding a classical planning problem as a CSP has al-
ready been studied in the literature (Barták, Salido, and
Rossi 2010). The intuition is that we can restrict the length
of a possible plan and then subsequently increase this limit
until a plan is found1. The planning problem can then be
modeled as a series of boolean satisfiability (SAT) problems,
where each SAT instance is the problem of finding a plan of
a given length. Those instances can be encoded as CSP.

Mansouri and Pecora (2016) represent actions as opera-
tors, defined as the pair (f, (F , C)), where f = (A, ·, ·, u, ·)
is a fluent indicating that action A is being executed, F de-
scribes the set of fluents including the set of precondition
fluents Fp and both negative effect fluents F− ∈ Fe and
positive effect fluents F+ ∈ Fe; and, finally, C is a set of
causal (CC), temporal (TC), spatial (SC), and symbolic (BC)
constraints on F ∪ {f}. Consider following example based
on the train problem outlined in Fig. 1, using the notations
introduced by Stock (2016):

f = (!driveTo(?t1, ?s2), [0,∞], [0, 30], u(track1) = 1)

Fp = {f1 = (At(?t2, ?s1), ·, ·)}
F− = {f1}
F+ = {f2 = (At(?t3, ?s3), ·, ·)}
CC = {f1 pre f, f closes f1, f opens f2, f planned f}
BC = {S(f)

1 = S
(f1)
1 , S

(f)
1 = S

(f2)
1 , S

(f)
2 = S

(f2)
2 }

TC = {I(f) oi I(f1), I(f) fi I(f2)}

A certain task driveTo requests a train t1 to drive from
its current location (s1) to the station s2 and finish this task
no later than at time 30, i.e. arrive within 30 minutes. Ad-
ditionally, driving here requires a resource of track1. Also,
we model a set of causal and temporal constraints between
the fluents and define symbolic constraints stating for exam-
ple that the symbolic variables ?t1, ?t2, and ?t3 represent the
same train (i.e. t1). All constraints are added to and consid-
ered within the general constraint network of the meta-CSP
and, thus, allow for joined reasoning over all available in-
formation. A plan is then only feasible iff the constraint net-
work is consistent regarding all sources of input, e.g. it is
temporally, symbolically, causally and resource consistent.
Sophisticated reasoners for each domain may be used.

While this framework allows for potentially straightfor-
ward addition of all kinds of knowledge, this comes at a high
computational cost. An intuitive solution is thus to employ
some heuristics. For example, Stock et al. (2015) propose a
number of variable ordering heuristics to potentially boost
efficiency in the CSP search.

1As Barták, Salido, and Rossi (2010) we here assume that a
plan always exists.
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Hierarchical Hybrid Planning with Meta-CSPs

Hierarchical planning extends classical planning by intro-
ducing a task hierarchy. Instead of only using the notion of
applicable actions, it essentially differentiates between prim-
itive and compound tasks. Primitive tasks are hereby compa-
rable to the normal actions in classical planning. Compound
tasks describe a more abstract notion of a set of actions. This
grouping can impose additional restrictions that might not be
easily achievable using only preconditions and effects of ac-
tions. For example, an imposed ordering constraint can be
easily encoded in a compound task and drastically improve
efficiency of the planner. In fact, ordering tasks according
to a partial order can be seen as the motivation behind HTN
planning, the most influential subarea of hierarchical plan-
ning (Bercher, Alford, and Höller 2019).

In what follows, we briefly recall the definitions for HTN
planning as defined by Bercher, Alford, and Höller (2019).
The basis for HTN planning is the so called task network,
which essentially imposes a strict partial order on a finite
set of tasks T . The HTN planning domain D is defined as a
tuple (F,NP , NC , δ,M), where

• F is a finite set of facts,

• NP and NC are names of primitive and compound tasks,
respectively,

• δ : NP → 2F × 2F × 2F maps actions to primitive task
names,

• and M is a finite set of decomposition methods.

Finally, a HTN problem P is a tuple (D, sI , tnI), where
D is the planning domain, sI ∈ 2F is the initial state, and
tnI is an initial task network. A solution to this problem is
then a final task network tnS which is reachable from sI by
only applying methods and compound tasks. In the process,
all compound tasks need to be decomposed into primitive
actions, such that tnS does not contain compound tasks any-
more. The enforced task hierarchy directly restricts the set of
possible solutions to only those that can be obtained by task
decomposition (Bercher, Alford, and Höller 2019).

Following the formulation by Bercher et al. (2016), com-
pound tasks may have their own set of preconditions and
effects. These may be modeled using causal links as seen in
POCL planning. Informally, a causal link is used to impose
a direct ordering between two tasks by linking the effects of
the former to the preconditions of the latter task, such that
no other task may be allowed to be ordered between them.
In a hierarchical setting, we may pass down causal links to
all appropriate subtasks.

Given a meta-CSP as described above, it is now possi-
ble to encode the ordering relations imposed by the task
network as causal constraints into meta-constraints. Meta-
variables can then include all unplanned tasks whose prede-
cessor tasks, indicated by the ordering constraint, have al-
ready been planned (Stock et al. 2015). Finding applicable
tasks, i.e., the planning process, is then modelled as a CSP
search, such as backtracking search.

Robustness in Meta-CSPs
Following the aforementioned definition of robustness, in
the context of HTN planning, we are interested in a configu-
ration that given one ore more tasks, has the ability to retain
its feasibility more than any other in the case where some of
the facts in the world have changed. In other words, we are
interested in performing all tasks using a plan that has higher
chance than any other to remain viable after changes in the
environment occur. We call such a plan a robust plan, a plan
with the maximum ability of resisting and avoiding infea-
sibility. Therefore, a robust plan can be seen as a proactive
measure that limits as much as possible the need for succes-
sive repairs and replanning, and hence can play an important
role in environments that are prone to perturbation and un-
expected change, such as real-life configurations.

To further detail how robustness and dynamic reasoning
can play a role in planning, let us reconsider the simple
train network from Fig. 1. For convenience let us define
all three possible routes from s1 to s3 as r1 = [s1, s2, s3],
r2 = [s1, s4, s2, s3], and r3 = [s1, s4, s5, s3]. We can ac-
complish the task of driving a train to a specific destina-
tion with hierarchical planning using an abstract task like
driveTo(?train, ?destination). In case there is
no direct connection, the task may be decomposed recur-
sively to build a path from start to finish.

As mentioned before, when converting the whole plan-
ning task into a meta-CSP, the ordering of the tasks is en-
coded via causal constraints, where only the configurations
representing the possible routes in the network are satisfiable
scenarios. Following Sioutis, Long, and Janhunen (2020),
we can calculate the similarity between any one particular
solution of the meta-CSP and all other satisfiable ones. A ro-
bust scenario is then one with maximum average similarity
to all other scenarios. Intuitively, a robust scenario on aver-
age shares the largest set of constraints with each other sat-
isfiable scenario. In contrast to execution monitoring (Fritz
2009; Muise 2014), such a notion of robustness can guide
the planning process actively and thus acts as a proactive
measure, whereas the former mostly describes a reactive
method. In this regard, the outlined proactive robustness for-
mulation may best be compared with the measure of rele-
vance guiding the search of Muise (2014).

So far, the focus in HTN planning has been mostly on
finding a solution as quickly as possible, and only recent
work considered length-optimal plans (Behnke, Höller, and
Biundo 2019). One promising direction in this regard is the
UPOM planner (Patra et al. 2020), where different utility
functions can be optimized. While currently only efficiency
is considered, it may also be possible to directly integrate a
measure of robustness.

While it is difficult to say with certainty which path any
current hierarchical planner would follow in the outlined
train routing example, it seems more likely that a majority
might choose the shortest option (i.e. route r1), not because
it is the length-optimal plan, but rather because its decom-
position depth is also smaller than any of the alternative
routes. Unless specified otherwise with some constraints,
subsequent trains all follow the same route. In terms of min-
imizing the travel time, this might be a preferred configu-
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ration. From a collision avoidance perspective, it might be
favorable to split traffic onto all available routes. And solv-
ing the problem conservatively, we might select only routes
via station s4, i.e. r2 or r3, since following a least commit-
ment strategy it might be possible to only commit to one
available task decomposition once the train actually reaches
s4. In case such online changes are not directly permitted, a
potential plan repair by restarting the planning process from
this configuration should yield similar results. It is difficult
to judge which option should be implemented in a real sce-
nario. The currently most likely behavior, however, in our
opinion is the least suitable in terms of robustness.

Conclusion and Future Directions
We motivated the need for robust solutions in hierarchical
planning using an example of a train routing problem. Ro-
bustness has not been studied in the context of hierarchical
planning before and finding a suitable definition yet alone
applying it in an actual planner poses a difficult challenge.
To this end, robustness might be best understood as a met-
ric that can be favored more or less, depending on the safety
restrictions imposed by the planning environment and the
likelihood that certain events may disrupt normal operation.
Here it can also be useful to consider predicted knowledge
from experts or machine learning systems. In our example
of a train network, we may get the information that one
track will be subject to buckling due to a heatwave (Nguyen,
Wang, and Wang 2012), an information we clearly want to
take into account when routing the trains.

As a starting point, we chose a previously proposed ap-
proach to hierarchical planning by Stock et al. (2015) based
on an abstract CSP representation, called meta-CSP (Man-
souri and Pecora 2016). Not only the task network is mod-
eled in this meta-CSP, but it also allows to incorporate many
other types of information, such as resource, temporal, and
spatial constraints. Reasoning in temporal and spatial do-
mains is usually done using QCNs (Ligozat 2013; Dylla
et al. 2017). In this context, Sioutis, Long, and Janhunen
(2020) recently studied a notion of robustness, which con-
cerns the perturbation tolerance of QCN solutions, i.e. their
likelihood to resist a change in the environment. Based on
similarities between the way knowledge is represented in
meta-CSPs and QCNs, we discussed the potential applica-
bility of a similar notion of robustness in the scope of hierar-
chical planning. This work poses as a first step towards more
robust solutions in the hybrid hierarchical planning frame-
work, and as such hopefully sparks a lively discussion on
how to best define, measure, and incorporate robustness in
existing applications.
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