
28th International Conference on
Automated Planning and Scheduling

June 24–29, 2018, Delft, the Netherlands

2018 - Delft

Hierarchical Planning 2018
Proceedings of the 1st ICAPS Workshop on

Hierarchical Planning

Edited by:

Pascal Bercher, Daniel Höller, Susanne Biundo, and Ron Alford

Organizing Committee

Pascal Bercher Ulm University, Germany
Daniel Höller Ulm University, Germany
Susanne Biundo Ulm University, Germany
Ron Alford The MITRE Corporation, McLean, Virginia, USA

Program Committee

Ron Alford The MITRE Corporation, McLean, Virginia, USA
Roman Barták Charles University, Prague, Czech Republic
Gregor Behnke Ulm University, Germany
Pascal Bercher Ulm University, Germany
Susanne Biundo Ulm University, Germany

Kutluhan Erol İzmir University of Economics, Turkey
Robert P. Goldman SIFT, LLC, Minneapolis, USA
Daniel Höller Ulm University, Germany
Ugur Kuter SIFT, LLC, Minneapolis, USA
Felix Richter Robert Bosch GmbH, Corporate Sector Research

and Advance Engineering, Stuttgart, Germany
Mak Roberts U.S. Naval Research Laboratory, Washington, DC, USA
Vikas Shivashankar Amazon Robotics, North Reading, Massachusetts, USA

ii

Preface

The motivation for using hierarchical planning formalisms is manifold. It ranges from an explicit
and predefined guidance of the plan generation process and the ability to represent complex
problem solving and behavior patterns to the option of having different abstraction layers when
communicating with a human user or when planning cooperatively. This led to a large set of
different hierarchical formalisms and systems. With this workshop, we want to bring together
scientists working on any aspect related to hierarchical planning to exchange ideas and foster
cooperation.

Hierarchies induce fundamental differences from classical, non-hierarchical planning, creating
distinct computational properties and requiring separate algorithms for plan generation, plan
verification, plan repair, and practical applications. Many of these aspects of hierarchical plan-
ning are still unexplored.

This wide range of important yet insufficiently solved problems is reflected in the topics presented
in this proceedings. Though the main focus lies on the development of planning systems, these
tackle quite different classes of hierarchical problems and use several solving techniques. It
includes work on real-time planning, planning with task insertion, distributed planning, and
extensions of formalisms to enable real-world application. Beside solvers, the presented work
includes techniques for the plan repair problem and discussions of the application in real-world
problems.

Pascal, Daniel, Susanne, and Ron
Workshop Organizers,
June 2018

iii

iv

Table of Contents

A Depth-Balanced Approach to Decompositional Planning
for Problems where Hierarchical Depth is Requested

David R. Winer and Rogelio E. Cardona-Rivera
. 1 – 8

Assumption-based Decentralized HTN Planning

Ugur Kuter, Robert P. Goldman, and Josh Hamell
. 9 – 16

HEART: HiErarchical Abstraction
for Real-Time Partial Order Causal Link Planning

Antoine Gréa, Laetitia Matignon, and Samir Aknine
. 17 – 25

HTN Plan Repair Using Unmodified Planning Systems

Daniel Höller, Pascal Bercher, Gregor Behnke, and Susanne Biundo
. 26 – 30

Programmatic Task Network Planning

Felix Mohr, Theodor Lettmann, Eyke Hüllermeier, and Marcel Wever
. 31 – 39

Tracking Branches in Trees –
A Propositional Encoding for Solving Partially-Ordered HTN Planning Problems

Gregor Behnke, Daniel Höller, and Susanne Biundo
. 40 – 47

XPlan: Experiment Planning for Synthetic Biology

Ugur Kuter, Robert P. Goldman, Daniel Bryce, Jacob Beal, Matthew Dehaven,
Christopher S. Geib, Alexander F. Plotnick, Tramy Nguyen, and Nicholas Roehner
. 48 – 52

v

vi

A Depth-Balanced Approach to Decompositional Planning
for Problems where Hierarchical Depth is Requested

David R. Winer1 and Rogelio E. Cardona-Rivera1,2

1School of Computing
2Entertainment Arts and Engineering Program

University of Utah
Salt Lake City, UT, USA

{drwiner, rogelio}@cs.utah.edu

Abstract
Hybrid planning with task insertion for solving classical
planning problems, or decompositional planning, com-
bines partial-order causal link planning with hierarchi-
cal task networks, where steps in the plan may represent
composite (i.e., compound) actions that are decompos-
able into sub-steps using hierarchical knowledge. We
have designed a planning algorithm that responds to a
request for maximizing the hierarchical depth of plans
while minimizing the plan length. In some applications,
plans that adhere to hierarchical constraints are pre-
ferred over other valid plans. One of the main obstacles
of this challenge is to incentivize the planner to insert
composite actions while avoiding excessive search on
the depth attribute. We introduce plan scoring heuris-
tics that avoid over-discounting and under-discounting
depth using a novel way to measure plan depth. We eval-
uate these heuristics on test problems and demonstrate
that we can generate deep, low-cost solutions to plan-
ning problems while avoiding excessive search.

Hybrid planning is a plan-space planning paradigm that
combines partial-order causal link reasoning (Weld 1994)
with hierarchical knowledge (Erol, Hendler, and Nau 1994)
in order to solve a hybrid planning problem (the refine-
ment of an initial partial plan into a plan with no flaws).
While there exist several variants of hybrid planning (e.g.
Young, Pollack, and Moore 1994, Lee-Urban 2012, Be-
chon et al. 2014), all variants afford some representation
of task hierarchies through two kinds of tasks (i.e. steps):
primitive and composite. The former are similar to steps
in partial-order causal link (POCL) planning. The latter are
drawn from hierarchical task network (HTN) planning (but
also contain preconditions and effects as in POCL plan-
ning); they represent abstract tasks involving several more-
primitive steps. Whereas a primitive step that has been added
to a plan can be directly executed (assuming its precondi-
tions hold), composite steps that have been added are not di-
rectly executable; a more primitive sub-plan for the compos-
ite step must be found that depends on the composite’s pre-
conditions and that achieves the composite’s effects. Such a
sub-plan may be input to a hybrid planner through a decom-
position method.

Our planning applications make a non-standard depth re-
quest for hybrid planners. The request is that the plan-
ner maximizes the ratio of hierarchical depth (number of

decomposition methods) to plan length (number of prim-
itive tasks) of generated plans. The number of decompo-
sition methods it uses to refine the initial plan is an in-
tegral part of the planning problem’s solution. Composite
tasks are not wholly substituted for sub-plans that decom-
pose them, but rather kept around to identify the hierarchi-
cal structure inherent in the plan. The underlying assump-
tion is that the high-level structure of the plan (identified
through the decomposition methods) is implicitly mean-
ingful or useful for the planning agent. For example, in
planning-based natural language generation (Garoufi 2014),
plans may be preferred if they follow recognizable discourse
patterns, which may be computed from data-driven obser-
vations and operationalized as hierarchical knowledge. An-
other example is the case of planning-based narrative gener-
ation (Young et al. 2013), wherein plans may be preferred if
they follow normative narrative structure, often analytically
identified as containing hierarchical segments (Prince 2003;
Bordwell, Thompson, and Smith 1997).

Typically, hybrid planners will insert a composite task,
rather than a primitive task, if the composite task is explic-
itly needed because it has some primary effect: an effect
that none of the tasks in its decompositional refinement can
establish on its own (Kambhampati, Mali, and Srivastava
1998). A primary effect can characterize something that is
more than the sum of its parts; for example, an argument is
made by refuting facts, establishing background, referring to
evidence, and making a conclusion, but none of these items
are sufficient on its own. In contrast, in the classic travel
planning domain, a goal to be located at a destination is
achieved by a primitive task of exiting a plane that is at said
destination; thus, a composite task – e.g. travel-by-plane –
is not inserted into a plan unless it is estimated to save the
planner time and effort for repairing the same goal condition.
Given that heuristics tend to underestimate effort saved, and
composite tasks add more to the plan length than primitive
tasks, a planner using a best-first search is going to evaluate a
repair with a primitive task as cheaper than a plan that makes
the same repair with a composite task. We address the prob-
lem of fulfilling the depth request in hybrid domains where
composite tasks may not have primary effects.

The decision point we focus on is which task to insert to
repair open conditions, which (in POCL planning) are flaws
in the plan generated when a step has unsatisfied (i.e. open)

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

1

preconditions and repaired by ensuring that the precondi-
tions are established by some earlier action; prior work has
focused on selecting a decomposition method for a com-
posite task. State-of-the-art heuristics that exploit task de-
composition (e.g. Minimal Modification Effort by Bercher,
Keen, and Biundo 2014) are not of use here. These heuristics
bias the planner to refine the initial plan to primitive tasks in
the least number of refinements (as they should do to gener-
ate the shortest plans). In our methodology, each composite
task is fully decomposed before it is inserted into a plan.
Thus, the hierarchical depth of a composite task is known at
the moment of insertion, and its entire decomposition refine-
ment tree (its sub-plan) is inserted into the plan. The main
question we ask is how should the planner best add hierar-
chical depth to the plan during task insertion to fulfill the
depth request? Our approach is to have the planner leverage
the known depth of the decomposition tree of inserted com-
posite tasks. Incentivizing the insertion of composite tasks
comes with a tradeoff: the planner must search a much larger
space of plans and significantly reduce efficiency. The key
problem we address is how to have the planner incentivize
inserting composite tasks without a significant tradeoff to
efficiency.
Contributions We introduce a plan selection function that
reifies the tradeoff between inserting deep and shallow tasks
within hybrid planning with task insertion. This function in-
centivizes selecting plans with composite tasks on the search
frontier and depends on a novel way to measure plan depth.
We evaluated our function’s effectiveness on the basis of
runtime performance and solution depth on test problems,
and demonstrate we can find deep, low-cost solutions while
avoiding brute-force search on hierarchical depth.

Related Work
Our planning task is an instance of hybrid planning with
task insertion. Terminologically, we use the term “decom-
positional planning” to describe what our planner is doing:
solving a problem given in terms of goal literals as in clas-
sical planning, but wherein abstract tasks can be inserted as
well (i.e. there are no initial abstract tasks, but rather solv-
ing proceeds from an initial dummy plan given by the ini-
tial conditions and the goal literals). While we recognize
that there are planning variants that differ terminologically
and semantically (e.g. “hybrid planning” by Kambhampati,
Mali, and Srivastava 1998), reconciling all variants is be-
yond the scope of this paper. In some variants, all (causally
necessitated) tasks are specified as part of a decomposition
method (Elkawkagy et al. 2012; Bercher, Keen, and Biundo
2014) and therefore task insertion is unneeded (or at least
not allowed in the context of the problem being addressed).
It is not always possible to specify all tasks in a decompo-
sition method: some open condition of a task may not have
a supplier within the same decompositional hierarchy. Thus,
task insertion is allowed to repair open conditions that are
left open as in Kambhampati, Mali, and Srivastava (1998)
and Geier and Bercher (2011). Inserted tasks can either be
primitive or composite.

One hybrid planning approach by Elkawkagy et al. (2012)
which does not allow task insertion is to compile a Task

Decomposition Graph (TDG) composed of edges connect-
ing tasks (primitive or composite) to decomposition meth-
ods and vice versa. The TDG is used to guide the planner
to shorter plans from an initial task representing the initial
partial plan so that the solution is a refinement of the ini-
tial task (Bercher, Keen, and Biundo 2014). The criteria for
a solution is that all composite tasks are decomposed into
primitive tasks, all tasks are fully grounded, and all open
conditions are repaired by other tasks in the plan. In our ap-
proach, a composite task is fully decomposed and grounded
before the entire sub-tree is inserted into a plan to repair an
open condition. The decompositions are performed in a pre-
caching stage where a max number of decompositional re-
finements (i.e. step height) is used to cutoff search. The de-
cision points we consider in this work is not which decom-
position method to select to decompose a composite task in
a plan, but rather which fully ground and decomposed com-
posite task tree to insert to repair an open condition in a plan.
Because the sub-tasks in the tree may have open conditions,
the TDG will under-estimate the number of decompositions
in the plan because inserted tasks may also be composite.

A planning domain and problem can (intentionally or in-
advertently) require hierarchical depth in the plan to solve
the problem. DPOCL-T (Jhala and Young 2010), a variant
of DPOCL (Young, Pollack, and Moore 1994) for schedul-
ing camera shots in narrative generation, is tested using a
domain that is engineered to promote hierarchical depth by
leveraging primary effects. At each “tier” in a multi-level
hierarchy, high-level operators have preconditions that can
only be fulfilled by other high-level operators at the same
level. Thus, a problem whose goal is a primary effect of a
high-level action will require the planner to create a high-
level plan. In a similar vein, HiPOP (Bechon et al. 2014)
uses stages to create plans with composite steps. In the first
round, only composite steps are applicable and must be used
for as long as possible without expanding them until no com-
posite steps can be used to satisfy preconditions of other
steps (or the goal conditions). If no solution can be found,
then HiPOP will never proceed to the expansion round.

The forward state-space hybrid planner UPS (To, Lang-
ley, and Choi 2015) favors states produced by composite
steps when that state satisfies elements of the goal formula.
Its heuristic counts the number of unmatched goal elements
when selecting steps for expansion, greedily selecting com-
posite steps. We suspect that UPS will excessively search
through a large space of composite tasks because of this
greedy heuristic. In future work, we plan to compare UPS
to our own approach.

The Language of Decompositional Planning
The formal model of decompositional planning we adopt
is taken from DPOCL, a planning system previously devel-
oped by Young, Pollack, and Moore (1994). DPOCL builds
on POCL planning, which searches in the space of plans to
find a partial plan (i.e. a set of steps S, a set of partial order-
ing relations O over S, and a set of causal links L) with no
flaws; all preconditions must be satisfied (no condition may
remain open) and no causal links may be threatened (i.e. it
should not be possible for any step to be ordered such that

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

2

it potentially undoes a causal link’s protected literal). Open
conditions are repaired through adding or reusing a plan step
and threatened causal links are repaired by promoting or de-
moting the offending step to come after or before (respec-
tively) the threatened link. For a more thorough introduction
to POCL planning, we refer the reader to Weld (1994).

DPOCL has two kinds of steps. A primitive step is as in
POCL planning. A composite step is a step that is decom-
posable into a partial-plan, called a sub-plan. Each compos-
ite step is a composite operator type paired with a set of
bindings over operator parameters. In this paper, compos-
ite steps are associated with a single decomposition method
and a set of bindings over decomposition parameters (i.e.
a composite operator is rewritten with a specific decompo-
sition method). A step in the sub-plan of a composite step
is a sub-step. The decomposition specifies constraints over
partially defined sub-steps that are useful in our application.
A decompositional link relates a composite step to a sub-
step. The height of a composite step is the longest path of
decomposition links. Thus a decompositional plan is repre-
sented by a tuple 〈S,O,L,D〉 where D is a set of decom-
positional links. The goal of our planner is to generate a
DPOCL plan that solves an input decompositional planning
problem and maximizes the ratio of decomposition links to
primitive steps.

Motivating Problem
Our approach is broadly motivated by the goal of fostering
successful human-computer communication. Humans im-
plicitly use grammar to understand and recognize the mean-
ing of speakers (Sperber and Wilson 1987). Strictly, a gram-
mar defines what is a well-defined sequence. In human com-
munication, a grammar may be informal and describe what
is an easily recognized pattern of utterances. In human-in-
the-loop planning, a planning agent can pose queries to a
human operator in the decision of how to continue the plan-
ning process (Roth et al. 2004; Schirner et al. 2013). These
systems can leverage the way human communicators struc-
ture information to more easily recognize user intent and se-
lect plans that are not cognitively demanding to parse.

The specific application for a decompositional planner we
focus on is the task of directing film. A film director controls
various details related to how agents (i.e. character actors)
perform actions in an environment and how camera shots
should convey those details. Film directors plan out visual
details across shots to build up a hierarchically-structured
editing pattern. An editing pattern is composed of camera
shots, and the sequence that shots cut from one to the next
(i.e. transition) affects the way that viewers focus on events.
The general principle is that good cuts have matching vi-
sual details across shots. The more that shots conform to
an editing pattern, the better the aesthetic quality of the se-
quence. In computer graphics research, camera control sys-
tems find camera sequences that best adhere to a grammar of
film (He, Cohen, and Salesin 1996; Christianson et al. 1996;
Christie, Olivier, and Normand 2008).

Formulated as a decompositional planning task, the film
director (i.e. the planner) selects the content and style of
camera shots (primitive tasks) to compose a scene. Each task

EditingPattern(EP)

ActReact

Act

FULL

React

CU-0

ActSeq

MM

Match

W-45

Match

W-120

Ellipses

Match

W-45

EP Match

W-120

Figure 1: Example Film Editing Grammar

has preconditions and effects: preconditions correspond to
the necessary world conditions for the actor to perform in the
world to create the camera shot content, and effects corre-
spond to conditions that change in the world state as a result
of the actor’s performance. The more that camera shots ad-
here to editing patterns (decomposition methods), the better
the quality of the resulting film. The decomposition meth-
ods impose constraints on camera shot attributes (e.g. scale,
angle) and character actions (e.g. orientation, timing) that
give rise to good editing transitions. Thus, the quality of the
solution is based on the degree that camera shots adhere to
editing patterns and not entirely on the length of the plan.
Figure 2 presents two short editing sequences: sequence A
has good individual shots but does not adhere to a pattern,
whereas sequence B adheres to an editing pattern and results
in matched visual details across shots.

The “film directing” decompositional planning task moti-
vates the depth request:

DEPTHREQUEST = max
π

|{s ∈ S(π) : height(s) > 0}|
|{s ∈ S(π) : height(s) = 0}|

maximize the ratio of decomposition methods to primitive
plan steps in a solution to a decompositional planning prob-
lem. This ratio corresponds to the percentage of camera
shots that adhere to an editing pattern. For each task that
the planner inserts to repair an open condition, the planner
must decide whether to add hierarchical depth to the plan’s
structure, and if so, how much. Figure 1 shows an exam-
ple grammar tree for film editing. The leaves of the tree
are camera shots, with the exception of EP where another
editing pattern can be refined into camera shots. To repair
an open condition, the planner decides whether to insert a
single camera shot (primitive task) or an editing pattern of
some depth (composite task), and each may introduce new
open condition flaws to establish the prerequisite world con-
ditions.

Approach
The approach has two stages: first, a composite step is com-
piled for every valid sub-tree of a task decomposition graph
(a sub-tree is valid just when its leaves are primitive tasks)
up to positive non-zero tree height cutoff hmax. These com-
posite tasks are pre-cached in a similar manner to mod-

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

3

Figure 2: Sequences A and B are camera shots sampled from different versions of the same film created by a film director. A
has good individual shots but sequences in the film are discontinuous and do not follow editing patterns. B contains sequences
developed to adhere to editing patterns. This results in matched visual details across shots and improved focus on events.

ern POCL planners (e.g. VHPOP, developed by Younes and
Simmons (2003) pre-caches all possible ground instances of
problem operators as steps). After grounding the primitive
operators (defined to be h = 0), grounding continues with
composite operators in a bottom-up manner. The first round
of composite operators to be grounded (h = 1) can only use
ground elements and steps of height 0. Inductively, compos-
ite steps that have been grounded at height h can serve as
sub-steps for grounding composite operators at height h+ 1
up to hmax (exclusive). Thus, a composite step is defined
relative to the height where it has been grounded.

Definition 1 (Composite Step) Represents an instance of
a composite operator λc at height h. It is a tuple λGc =
〈λc, B, πu, h〉, where B is a set of consistent bindings for
the variables in V ∈ λc and πu = 〈S,O,L,D〉 is a sub-
plan for a decomposition of λc such that S contains at least
one step whose height is exactly h − 1 and no steps with
height greater than h− 1.

Our method is a dynamic programming approach to recur-
sive HTN planning that can be used when the maximum
depth is known a priori. Composite operators are grounded
for every applicable decomposition method (at each height
h = 1 to hmax). The decomposition method is used to cal-
culate the sub-plan and variable bindings that are defined in
a composite step. This dynamic programming method was
developed by Winer and Young (2017).

The second stage is to solve the planning problem using
pre-cached steps. The algorithm follows a classic POP with
the addition that adding composite steps leads to the inser-
tion of its pre-cached sub-plan and the decompositional links
that point the composite step to its sub-steps.

0

00 01

010 011 012000 001

0110 0111

02

020

a a

a arr a

p d

a

a

Figure 3: A plan search tree. Nodes are plans and edges are
refinements to the plan. The edge label represents the repair
method; one of add, reuse, promotion, and demotion.

Plan Search Tree and Plan Depth

Our novel notion of plan depth is based on the reasons that
steps are added to the plan. It depends on two structures: de-
composition links (as defined earlier) and add-repair arcs.
To define add-repair arcs, it is useful to talk about the plan-
ning process by way of its search tree. The plan search tree
represents the search space of plans and their refinements.
A vertex is a pair (π, Fπ) where π is a plan and Fπ is a set
of flaws in π. Edges are of the form (π, Fπ) (f,ρ)−−−→(π′, Fπ′)
where f ∈ Fπ is the flaw selected for π (the parent) and
π′ (the descendant) is the result of repairing flaw f with re-
finement ρ (one of {add, reuse, promote, demote}). Fπ′ =

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

4

Fπ − f ∪ Fρ where Fρ are flaws detected in π′ after ρ. A
path is a sequence of nodes and edges connecting a vertex
with a descendant.

Let q be a path on a plan search tree, and π′ =
〈S,O,L,D〉 be a plan on a leaf vertex. An add-repair
arc exists between two steps si, sj ∈ S from sj to
si just when there exists a causal link of the form
si
p−→sj ∈ L such that si was added to S through an edge

(π, Fπ) (〈si,p〉, add)−−−−−−−→(π′, Fπ′) (i.e. an open condition p for
step si repaired through adding a step) for some parent π.

Definition 2 (Deep Path and Plan H-depth) A deep path
δ on a plan π is a traversal of decomposition links and add-
repair arcs in the plan; the length of a deep path len(δ) is
the number of decomposition links in the traversal. The H-
depth of π is the longest deep path on π.

When steps are reused to repair an open condition, no plan
H-depth is added. H-depth is recalculated only after adding
steps and requires only constant time to track.

Algorithm
The Ground Decompositional Partial Order Planning algo-
rithm (GDPOP) presented in Algorithm 1 is a propositional
POCL planner that uses composite steps whose decompo-
sition refinements are already performed. GDPOP takes as
input a set of ground primitive steps ΛGp , a set of ground
composite steps ΛGc , the plan-space initial plan, a candi-
date map, which maps every open condition of every step
〈sneed, p〉 to every step with an effect p), and a threat map,
which maps every open condition of every step 〈sneed, p〉 to
every step with an effect ¬p. Initially, the plan has depth
0 and steps are assigned a depth of 0. When a composite
step is added to repair an open condition (a la Algorithm 2),
sub-steps are inserted and depth is propagated (a la Algo-
rithm 3).

At each iteration, GDPOP identifies all flaws in the plan
under consideration, selects a flaw to fix, and adds to the
search fringe all the plans that represent every way in which
the flaw could be repaired. Selecting which flaw to re-
pair affects the order that plans are visited in the search
space (Younes and Simmons 2003); we adopted a simplified
version which is
1. open conditions that are static (are unchangeable given

the problem’s operators)
2. threatened causal link flaws
3. open conditions that hold initially
4. most unsafe open conditions first (with at least one po-

tential risk detected using the threat map)
5. open conditions with at least 1 candidate for reuse (de-

tected using the candidate map, sorted by random hash
code)

6. open conditions with no option for reuse
A risk srisk in a plan π for an open condition of the form
〈sneed, pre〉 is a step that may undo the open condition be-
cause srisk ∈ TMAP[pre] and 6 ∃sneed ≺ srisk ∈ O(π). The
number of risks for an open condition is set at the moment
it is created (we did not update the number of risks when
inserting new steps or remove risks when a step is no longer

Algorithm 1 GDPOP
Input: Candidate map CMAP, threat map TMAP, initial plan π0
with steps s0, s∞ (all of depth 0), a function F returning
flaws F for a plan, and a plan selection function E .
Output: A consistent plan with no flaws or failure.

1: OL := openList.push(π0)
2: while OL not empty do
3: π = 〈S,O,L,D〉 := arg maxπ∈OL E(π)
4: if cycle in O, then skip
5: end if
6: F := F(π, TMAP), return π if |F | = 0
7: f := Flaw-Select(F,CMAP, TMAP)
8: if f is an open condition then
9: OL.push(Add(π, f, CMAP))

10: OL.push(Reuse(π, f, CMAP))
11: else if f is a threatened causal link then
12: OL.push(πpromote and πdemote)
13: end if
14: end while
15: return FAIL

Algorithm 2 Add
Input:π, 〈sneed, p〉, CMAP;
Output: Expanded π

1: Π = ∅
2: for each step λ in CMAP[p] do
3: snew := λ.clone(); snew.depth = sneed.depth
4: π′ := π.clone()
5: Insert(π′, snew); Repair(π′, snew, sneed, p)
6: Π.add(π′)
7: end for
8: return Π

a risk). A candidate scndt in a plan for an open condition is
a step in CMAP[pre] that can be ordered before sneed. Simi-
larly, no update is made to update the number of candidates
after the open condition is created.

We detail the plan refinement operations that use our
novel constructs (i.e. Algorithm 2, Algorithm 3) and leave
un-specified the plan refinement operations that are taken
from standard POCL planning (i.e. Reuse in Algorithm 1,
Repair in Algorithm 2, and the calculation of plans πpromote
and πdemote that promote and demote steps that threaten
causal links, respectively).

A Depth-Balancing Plan Selection Heuristic
The evaluation of a plan, which orders plans in the search
frontier (open list) in a best-first plan-space search, is de-
fined as E0(π) = g(π) + h(π) where g(π) denotes the plan
cost, i.e. the number of steps in the plan, and h(π) denotes
the heuristic value, an estimate of the number of steps which
need to be inserted into the plan to solve the problem.

We adopt VHPOP’s additive-reuse heuristic function for
calculating the heuristic value. The function recursively sim-
ulates new open conditions created by inserting actions to
make repairs until all open conditions hold initially. Nota-

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

5

Algorithm 3 Insert
Input:π, snew

1: Add snew to π
2: if height(snew) > 0 then
3: for each sub-step s in SUB-PLAN(snew) do
4: Add decompositional link snew

�

s to π
5: s.depth = snew.depth+ 1
6: if s.depth > π.depth then
7: π.depth = s.depth
8: end if
9: Insert(π, s)

10: end for
11: end if

tion: CMAP is a candidate map, which maps each precondi-
tion to the set of actions that can repair it, and OC returns
the set of open conditions in a plan.

hradd(π) =
∑

q−→ai∈OC(π)

0 if ∃aj ∈ S ∩ CMAP[q]

and ai ≺ aj 6∈ O
hadd(q) otherwise

hadd(q) =

0 if q holds initially
mina∈CMAP[q] hadd(a) if CMAP[q] 6= ∅
∞ otherwise

hadd(a) = 1 +
∑

p∈pre(a)
hadd(p)

In addition to cost g and heuristic h, we introduce a value
d that corresponds to H-depth (as in Definition 2). We ex-
perimented with several ways to discount this value:
1. E1(π) = g(π) + hradd(π)− d(π)

2. E2(π) = g(π) + hradd(π)− log2(d(π) + 1)

3. E3(π) = g(π)
1+log2(d(π)+1) + hradd(π)

4. E4(π) = g(π)+hradd(π)−|{s ∈ S(π) : height(s) > 0}|
5. E5(π) = g(π)2

1+|{s∈S(π):height(s)>0}| + hradd(π)

6. E6(π) = |{s ∈ S(π) : height(s) > 0}|+ hradd(π)

In E2 and E3, the logarithm helps diminish the extent to
which plan H-depth drives the score. The gist of these func-
tions is that composite steps are considered less valuable
as repairs the deeper the plan gets, and therefore protects
against over-incentivizing depth. E2 subtracts depth and E3
divides by it; we compared them to evaluate the sensitivity
of the search to how depth is factored into the score. We hy-
pothesized that E3 would find the best depth-request ratios.

Preliminary Evaluation 1
We developed and compared GDPOP planning with differ-
ent plan selection heuristics on a generic domain. Our fo-
cus is on the performance of the heuristics on each problem.

Table 1: A comparison of plan quality across experiment
conditions. All values are averages produced across prob-
lems; g(π)m is the mean cost of solutions, S is the number
of solutions out of 320, d(π)m is the mean depth of solu-
tions, and dmax(π)m is the mean maximum depth of solu-
tions, where the maximum is defined over solutions for a
given planning problem.

g(π)m S d(π)m dmax(π)m

gPO 6.89 320 0.00 0.00
gInsrt E0 5.89 320 0.61 0.88
gInsrt E1 6.58 320 0.30 1.13
gInsrt E3 9.58 320 1.36 2.75
gAdd E0 3.34 287 1.01 2.38
gAdd E1 2.79 152 2.10 3.71
gAdd E2 3.45 290 1.69 2.88
gAdd E3 5.91 281 1.98 4.38

In addition to E1, E2, E3 as candidate depth-balancing plan
selection functions, we also considered the following algo-
rithm variants:
• gPO (primitive-only) indicates that only primitive steps

are provided as input.
• gInsrt (with composite steps) adds 1 to the cost for every

Insert operation.
• gAdd (with composite steps) adds 1 to the cost for ev-

ery Add operation (and therefore sub-steps are inserted
for free).

Methods Python was used to prototype the idea and hy-
pothesis1. Subsequently, C# was used as part of the port to
the Unity Game Engine for film directing, and demonstrates
the run time efficiency more realistically. We ran the proto-
type implementation of GDPOP on sample problems which
vary in number of objects, initial conditions, or goal condi-
tions. The composite operators in the domain are based on
filming the classic travel domain. Eight (8) problems were
constructed that averaged 2 agents, 2.125 vehicles, 2.5 loca-
tions, 1.625 goal conditions. First, the steps are pre-cached.
On average, the problems included 45.25 compiled primi-
tive steps (λGp), and 201 compiled composite steps (λGc).
The maximum step height is 2. The largest problem (#8) has
4 agents, 4 locations, 2 vehicles, and 2 goal conditions. The
planner is run on a 64-bit Windows 7 machine with an In-
tel i7-3770 CPU at 3.40 GHz and 16 GB of RAM. For each
experimental condition, the planner was run until 40 solu-
tions were generated or 400 seconds had elapsed. The con-
ditions of the experiment are gPO, gInsrt E i, and gAdd E i
for i = 0− 3; a total of 9 conditions.

Results We analyzed the performance of the planner on
the basis of runtime and nodes expanded. In general, the
primitive-only condition is fastest but expands far more
nodes (as it should given that composite steps can add many
primitive steps in a single node). The gInsrt and gInsrt E1

1https://github.com/drwiner/PyDPOCL

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

6

Table 2: Plan Evaluation Results (Preliminary Evaluation
2). Legend: Ev: plan scoring function, Heu: heuristic, AR:
“AddReuse”, OC: “number of open conditions”, RT : run-
time (milliseconds), Op: “number of nodes opened”, Exp:
“number of nodes expanded”, Co: cost, D: number of de-
composition methods, R: depth request ratio, S: number of
problems solved out of 8. The “zero” heuristic was also run
for each evaluation, but not included in cases where no prob-
lems are solved. We also ran a breadth-first search which did
not solve any problems.

Ev Heu RT Op Exp Co D R S
E0 AR 734 1744 185 4.5 0.3 0.4 8
E0 OC 346 1087 180 3.3 0 0 7
E1 AR 697 1557 165 6.3 1.1 1.5 8
E1 OC 334 1044 175 5.3 1 1.4 7
E2 AR 690 1526 161 6.3 1.1 1.5 8
E2 OC 332 1012 168 5.3 1 1.4 7
E3 AR 123 360 41.4 6.4 1.1 1.5 8
E3 OC 191 730 87 6.3 1.1 1.5 8
E4 AR 720 1744 185 4.6 0.3 0.4 8
E4 OC 333 1087 180 3.3 0 0 7
E5 AR 29 77 12 5 1 0.6 3
E5 OC 401 1027 199 9 2 0.4 2
E6 AR 47 166 21 4.2 0 0 6
E6 OC 44 232 28 4.3 0 0 8
E6 Zero 1509 5430 966 3 0 0 5
DFS Zero 11 61 13 8 1 0.02 1

conditions perform very similarly, expanding less nodes than
PO but more than the gAdd conditions. The results suggest
that the gAdd cost function with the E3 scoring function ex-
pands the fewest nodes on average.

Table 1 shows the quality of solutions for each experimen-
tal condition across planning problems. Across the experi-
mental conditions, we observe that cost is weakly sacrificed
for plan H-depth, and that E3 performs best for finding the
deepest solutions. Although gAdd E1 appears to find the best
average depth, it does not find solutions on one of the plan-
ning problems in the allotted time (problem 8) and generally
struggled on other problems, whereas gAdd E2 and E3 found
40 solutions on this problem before the time cutoff.

Preliminary Evaluation 2
The first experiment sought to evaluate plan selection cri-
teria that would promote hierarchical depth. However, the
depth request ratio was not measured. We ran a new experi-
ment to evaluate the average depth request ratio, to compare
against baseline heuristics, and to compare against other se-
lection functions that are potentially depth-balancing. The
GDPOP algorithm is reimplemented in C#2 as part of the
film directing application. Table 2 shows performance and
quality averages for the first solution across the 8 problems
used in the previous experiment, for each combination of
evaluation function and heuristic function, applying a cutoff
time of 6,000 milliseconds.

2https://github.com/drwiner/gdpop

Results The plan selection functions that perform best on
the depth request are E1, E2, and E3 with the add-reuse
heuristic. E3 also performs well with the number of open
conditions heuristic, but overall does not perform as consis-
tently and does not solve all 8 problems. The zero heuristic
(h(π) = 0) typically did not find solutions in time.

Conclusion
Hybrid planning techniques are popular in theory and prac-
tice, but (as also noted by Shivashankar et al. 2016) lit-
tle effort has been devoted to guiding the search using hi-
erarchical information in a planner-independent way. This
planning paradigm is used in domains where hierarchical
knowledge characterizes phenomena of interest that is not
expressible in non-hierarchical formalisms; for example, the
recognition of higher-level concepts on the basis of more
primitive event information (Lesh, Rich, and Sidner 1999;
Cardona-Rivera and Young 2017) or the generation of nar-
ratives where hierarchies represent communicative patterns
and story plots (Winer and Young 2017). With our work,
search in these domains can generate deep, low-cost solu-
tions in a more principled manner.

One of the key obstacles we overcome with our approach
is avoiding excessive search on the hierarchical depth at-
tribute. A naive strategy is to simply discount composite
tasks that add depth. However, this strategy causes the plan-
ner to always search through the space of plans that in-
sert composite tasks before considering primitive tasks. The
magnitude of the discount determines how excessively the
planner searches in the direction of inserting composite tasks
to repair open conditions. At some point, the discount is out-
weighed by the size of the plan and backtracking occurs such
that shallower tasks are considered by the planner to make
the same repairs. Although this approach prioritizes maxi-
mum depth, it is slow because it behaves like brute force
search on the hierarchical depth attribute to find the best
depth/cost ratio.

On the other hand, if the least-cost plans are always ex-
panded first and no discount is offered for inserting tasks
that add hierarchical depth (as in the standard case), then
the planner will start shallow and insert composite tasks
just when it is strictly more efficient. A depth-balanced ap-
proach neither over-discounts nor under-discounts hierarchi-
cal depth. In this work, we formulate a dynamic discount for
depth that exploits the hierarchical depth of the sub-trees of
composite tasks to guide the planner to “deep” solutions.
When a plan is “shallow” (hierarchically), deep composite
tasks are discounted, but as the plan becomes “deeper”, this
discount recedes. We introduced a new way to measure plan
depth, and used this measurement as part of a search strategy
for decompositional planning where deep solutions are pre-
ferred. Our preliminary evidence supports a claim that our
dynamic discount is useful for achieving a depth-balanced
approach. Our method may also be useful for state-space
decompositional planning, which has historically suffered
from similar issues.

Importantly, we tested our scoring functions on a single
planning domain. To verify that our results are generaliz-
able, we also need to test the scoring functions with different

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

7

hierarchical domains. The effects of differently structured
hierarchical knowledge is less clear than primitive-only do-
mains (Chrpa, McCluskey, and Osborne 2015); an evalua-
tion with such differently structured hierarchical knowledge
warrants a follow-up investigation that is beyond our scope
here. This study would compare domains where the amount
of decomposition knowledge provided as input is controlled,
and its effects on the search for deep solutions is examined.

References
Bechon, P.; Barbier, M.; Infantes, G.; Lesire, C.; and Vi-
dal, V. 2014. HiPOP: Hierarchical Partial-Order Planning.
In Proceedings of the 7th European Starting AI Researcher
Symposium at the 21st European Conference on Artificial
Intelligence, 51–60.

Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid Plan-
ning Heuristics Based on Task Decomposition Graphs. In
Proceedings of the 7th Annual Symposium on Combinato-
rial Search, 35–43.

Bordwell, D.; Thompson, K.; and Smith, J. 1997. Film Art:
An Introduction. McGraw-Hill New York.

Cardona-Rivera, R. E., and Young, R. M. 2017. Toward
combining domain theory and recipes in plan recognition.
In Proceedings of the Plan, Activity, and Intent Recognition
Workshop at the 31st AAAI, 796–803.

Christianson, D. B.; Anderson, S. E.; He, L.-w.; Salesin,
D. H.; Weld, D. S.; and Cohen, M. F. 1996. Declarative
camera control for automatic cinematography. In AAAI/I-
AAI, Vol. 1, 148–155.

Christie, M.; Olivier, P.; and Normand, J.-M. 2008. Camera
control in computer graphics. Computer Graphics Forum
27(8):2197–2218.

Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2015. On the
Completeness of Replacing Primitive Actions with Macro-
actions and its Generalization to Planning Operators and
Macro-operators. AI Communications 29(1):163–183.

Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving Hierarchical Planning Performance by
the Use of Landmarks. In Proceedings of the 26th AAAI,
1763–1769.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and Expressivity. In Proceedings of the 12th
National Conference on Artificial Intelligence, 1123–1128.

Garoufi, K. 2014. Planning-based models of natural
language generation. Language and Linguistics Compass
8(1):1–10.

Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proceedings of the 22nd
IJCAI, 1955–1961.

He, L.-w.; Cohen, M. F.; and Salesin, D. H. 1996. The
virtual cinematographer: a paradigm for automatic real-time
camera control and directing. In Proceedings of the 23rd an-
nual conference on Computer graphics and interactive tech-
niques, 217–224. ACM.

Jhala, A., and Young, R. M. 2010. Cinematic visual dis-
course: Representation, generation, and evaluation. IEEE
Txn on Comp. Intelligence and AI in Games 2(2):69–81.
Kambhampati, S.; Mali, A.; and Srivastava, B. 1998. Hybrid
Planning for Partially Hierarchical Domains. In Proceedings
of the 15th National Conference on Artificial Intelligence,
882–888.
Lee-Urban, S. M. 2012. Hierarchical Planning Knowledge
for Refining Partial-Order Plans. Ph.D. Dissertation, Lehigh
University.
Lesh, N.; Rich, C.; and Sidner, C. L. 1999. Using plan
recognition in human-computer collaboration. In Proceed-
ings of the 7th International Conference on User Modeling,
22–32.
Prince, G. 2003. A Dictionary of Narratology. University
of Nebraska Press.
Roth, E. M.; Hanson, M. L.; Hopkins, C.; Mancuso, V.; and
Zacharias, G. L. 2004. Human in the loop evaluation of
a mixed-initiative system for planning and control of mul-
tiple uav teams. In Proceedings of the Human Factors and
Ergonomics Society 48th Annual Meeting, 280–284.
Schirner, G.; Erdogmus, D.; Chowdhury, K.; and Padir, T.
2013. The future of human-in-the-loop cyber-physical sys-
tems. Computer 46(1):36–45.
Shivashankar, V.; Alford, R.; Roberts, M.; and Aha, D. W.
2016. Cost-optimal algorithms for planning with procedural
control knowledge. In Proceedings of the 22nd European
Conference on Artificial Intelligence, 1702–1703.
Sperber, D., and Wilson, D. 1987. Précis of relevance: Com-
munication and cognition. Behavioral and brain sciences
10(4):697–710.
To, S. T.; Langley, P.; and Choi, D. 2015. A Unified Frame-
work for Knowledge-Lean and Knowledge-Rich Planning.
In Proceedings of the 3rd Annual Conference on Advances
in Cognitive Systems.
Weld, D. 1994. An Introduction to Least Commitment Plan-
ning. AI Magazine 15(4):27.
Winer, D. R., and Young, R. M. 2017. Merits of Hierachical
Story and Discourse Planning with Merged Languages. In
Proceedings of the 13th AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment.
Younes, H. L., and Simmons, R. G. 2003. VHPOP: Versatile
heuristic partial order planner. JAIR 20:405–430.
Young, R. M.; Ware, S.; Cassell, B.; and Robertson, J. 2013.
Plans and planning in narrative generation: a review of plan-
based approaches to the generation of story, discourse and
interactivity in narratives. Sprache und Datenverarbeitung,
Special Issue on Formal and Computational Models of Nar-
rative 37(1-2):41–64.
Young, R. M.; Pollack, M. E.; and Moore, J. D. 1994. De-
composition and causality in partial-order planning. In Pro-
ceedings of the Conference on Artificial Intelligence Plan-
ning Systems, 188–194.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

8

Assumption-based Decentralized HTN Planning

Ugur Kuter and Robert P. Goldman and Josh Hamell
SIFT, LLC

319 1st Ave N., Suite 400,
Minneapolis, MN 55401, USA

{ukuter, rpgoldman, jhamell}@sift.net

Abstract
This paper describes our approach to decentralized planning
viaHierarchical TaskNetworks (HTNs), whichwe call Auton-
omy and Rationale Coordination Architecture for Decentral-
ized Environments (Arcade). Arcade is a decentralized AI
planning framework that can incorporate a number of Shop2
HTN planner instances. Each Shop2 instance may have a dif-
ferent HTN planning domain definition than the others in the
framework. Arcade does not assume full communications
among the planners. For this reason, Arcade planners must
make and manage assumptions about parts of the world state
that are not visible to them, including the tasks and plans
of other planners. The individual planners also must oper-
ate asynchronously, and may receive new tasks, either from
outside, or from other planners in Arcade.
In this paper, we describe our assumption-based planning
approach and how Arcade coordinates multiple, asyn-
chronously interacting HTN planners, using assumptions
and task queues. We first present a formal framework,
Assumption-based, Decentralized Total-order Simple Task
Network (DTSTN) planning, based on Total-order Simple
Task Network planning. This is necessary because of our use
of Shop2-style task semantics, instead of goal semantics. Then
we describe the Arcade framework, and how it implements
the framework. Finally, we present preliminary experimental
results in a simplified air operations planning domain, which
shows that Arcade realizes the expected speed-up when ap-
plied to weakly coupled planning problems.We conclude with
directions for future work.

Introduction
Existing distributed and multi-agent planning systems (Tor-
reño et al. 2017) typically focus on deterministic planning
problems, with relatively simple models. They also typi-
cally assume a single overall planning task that must be dis-
tributed among multiple agents. Most practical applications
for decentralized planning (e.g., military operations, UAV
planning, and others) involve independent planners and rea-
soners that are responsible for accomplishing different tasks
under large-scale uncertainty, while communicating their in-
tentions and coordinating their actions. These planners often
are not handed a single, large problem to be decomposed
and then solved. Instead, these planners often receive their
own planning problems to solve based on the organizational
structures in which they are embedded (e.g., logistics and

manufacturing systems separately plan to secure inputs and
to make products). They may also receive additional tasks at
runtime.

The problems we are interested in also involve limited
and unreliable communications. Thus, our planners must
operate under assumptions about peer decisions and states,
where knowledge is not fully shared. Finally, in these ap-
plications the classical assumption of complete information
and predictability is typically difficult or impossible to ap-
ply. For example, Seuken and Zilberstein (2008) address
partial-observability and uncertainty during planning; how-
ever, these approaches cannot scale up to the large-scale
planning problems and use closed-world formalisms.

Autonomy and Rationale Coordination Architecture for
Decentralized Environments (Arcade) is a decentralized
planning architecture that allows multiple Shop2 (Goldman
and Kuter 2018a; Nau et al. 2003) HTN planner instances
to generate plans for planning tasks concurrently and asyn-
chronously. Each planner may generate plans for tasks issued
by other planners or received as input from outside. Our con-
tributions in this paper are as follows:
• We present a formalism for assumption-based HTN plan-
ning, which allows Shop2 to generate plans for execution
in the presence of other (cooperative) agents, when agent-
to-agent communications are unreliable and the environ-
ment is not fully observable.

• We describe Arcade, our decentralized planning frame-
work based on the above formalism.Arcade takes as input
a number of HTN planning problem specifications for all
or a subset of the planners. Arcade then coordinates the
asynchronous operations of multiple Shop2 instances.

• We describe howArcade communicates tasks to the plan-
ners by generating new HTN planning problem specifica-
tions, and by publishing those specifications. The planners
can sign up to meet those requests if the tasks involved be-
long to the domain descriptions of those planners, and in-
volve domain entitieswhich those planners control.During
the decentralized planning process, Arcade ensures the
plans generated in this way are sound and consistent, bro-
kering solutions to conflicts between the decisions made
by different planners.

• We are currently using Arcade in various Air Operations
planning scenarios. We present our preliminary experi-

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

9

ments and results in a high-level version of this domain,
developed for publication purposes. Our preliminary re-
sults are promising: decentralized planning shows substan-
tial scalability improvements over centralized planning via
Shop2, as one would expect. We also provide a represen-
tative result on the experiments we are conducting on the
various individual components of Arcade.
In the immediately following section we start by reviewing

totally ordered simple task network (TSTN) planning. We
then build our framework, Assumption-based, Decentralized
TSTN planning, on the basic TSTN definitions. Critically,
these definitions allow us to characterize what it means for
Decentralized TSTN (DTSTN) plans to be consistent with
each other. We then explain the Arcade approach, which
builds consistent sets of DTSTN plans, using assumptions to
lazily bind resources to tasks, and to enable agents to reason
in the context of beliefs about each others’ likely actions and
state. We present preliminary experimental results that show
the efficiency of our approach. Finally, we conclude with
a review of related work and conclusions (including future
directions).

Preliminaries: TSTN planning
We use the same definitions for logical substitutions, atoms,
constant and variable symbols, positive and negative literals
in a finite function-free first-order language, as in (Ghallab,
Nau, and Traverso 2004). A state is a collection, s, of ground
atoms. In our work, we adopt a restricted case of HTN plan-
ning called Total-order Simple Task Network (TSTN) plan-
ning (Ghallab, Nau, and Traverso 2004):1

(:action start-order
:parameters
(?o - order ?n ?n1 - count)
:precondition (and

(waiting ?o)
(stacks-avail ?n)
(next-count ?n1 ?n))

:effect (and (not (waiting ?o))
(started ?o)
(not (stacks-avail ?n))
(stacks-avail ?n1)))

Figure 1: An example operator schema from the openstacks do-
main (Helmert, Do, and Refanidis 2010). Shop2 can use PDDL
action definitions.

• A TSTN domain is a quadruple:

D = 〈ops(D), tasks(D),meths(D), ω(D)〉

• Each operator o ∈ ops(D) is a triple
o = 〈name(o), precond(o), effects(o)〉

where name(o) is a task (see below), and precond(o) and
effects(o) are sets of literals called o’s preconditions and

1In future work, we plan to generalize this – see discussion in
the Conclusions.

(:action (start-order o1 s2 s1)
:precondition (and

(waiting o1)
(stacks-avail s2)
(next-count s2 s1))

:effect (and (not (waiting o1))
(started o1)
(not (stacks-avail s2))
(stacks-avail s1)))

Figure 2: Operator from the openstacks schema in Figure 1. In this
case o1, s1, and s2 ∈ ω(D), and the task is (start-order o1
s2 s1).

effects. See Figure 1 for an example operator schema, and
Figure 2 for an operator. If a state s satisfies precond(o),
then o is executable in s, producing the state γ(s, o) =
(s−{all negated atoms in effects(o)})∪{all non-negated
atoms in effects(o)}.

• tasks(D) is the finite set of ground tasks, such that
tasks(D) = prims(D) ∪ comps(D), where prims(D) is
the set of primitive tasks and comps(D) is the (disjoint)
set of nonprimitive (or complex) tasks in the planning
domain.
A task, t, is a symbolic representation of an activity. Syn-
tactically, a task looks like a term (functor and arguments
from the universe of the domain). If t is also the name of
an operator, then τ is primitive; otherwise τ is nonprim-
itive. Primitive tasks can be instantiated into actions, and
nonprimitive tasks need to be decomposed into subtasks.

• ω(D) is the universe of entities in the planning domain.
We have seen in Figures 1 and 2, that ω(D) is used to form
tasks (and hence operator and method names).

• A method, m, is a prescription for how to decompose a
task into subtasks.m is a tuple:

m = 〈task(m), precond(m), subtasks(m)〉,
where task(m) ∈ tasks(D) is the taskm can decompose,
precond(m) is a set of preconditions, and subtasks(m) =
(t1, . . . , tj) , ti ∈ tasks(D) is a sequence of subtasks, the
expansion of task(m). See Figure 3 for an example.

(:pddl-method (open-all-stacks)
open-a-stack-and-recurse
(exists (?n ?n1 - count)
(and (stacks-avail ?n)

(next-count ?n ?n1)))
(:ordered (open-new-stack ?n ?n1)

(open-all-stacks)))

Figure 3: Example method from the openstacks domain for the task
(open-all-stacks). The precondition is that there be a stack
available (an ?n1 that is not yet open). The subtasks are to open a
new stack, and then open any remaining stacks, recursively. This is
a lifted method schema, corresponding to multiple groundmethods.

A TSTN planning problem is a tuple: P = 〈D, s0, T0〉,
where D is a TSTN planning domain, s0 is the initial state,

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

10

and T0 is an initial sequence of tasks. (1) If T0 is the empty
sequence, ε then the only solution is the empty plan π =
〈〉, and π’s derivation (the sequence of actions and method
instances used to produce π) is δ = 〈〉. If the current set of
tasks is t1 . . . tn and (2) t1 is a primitive task, there is an
operator α with name(α) = t1, and α is executable in si
producing a state s1, then if P ′ = 〈D, s1, T ′〉 has a solution
π with derivation δ, then the plan α • π is a solution to
wi (where • is concatenation) whose derivation is α • δ.
(3) If t1 is nonprimitive and there is a method m such that
task(m) = t1, and if s0 satisfies precond(m), and if P ′ =
(s0, subtasks(m)•T ′, O,M) has a solutionπwith derivation
δ such that δ only uses objects from the agent i’s tasks T ,
then α • π is a solution to P and its derivation ism • δ.

Assumption-based Decentralized TSTN
Planning

In Arcade, an assumption is an ordered pair e =
〈cond, cost〉, where cond is a literal and cost is a non-
negative real number that denotes the cost of validating
the cond. More precisely, the cost is a heuristic estimate
of the cost of checking to see whether the assumption is
guaranteed to hold at run time or not. Two assumptions,
e1 = 〈cond1, cost1〉 and e2 = 〈cond2, cost2〉 are inconsis-
tent, if either (1) cond1 = not(cond2), or vice versa; or (2)
cond1 = cond2 and cost1 6= cost2. Assumptions that are not
inconsistent are consistent.

A decentralized TSTN planning agent is a tuple of the form
A = 〈D, ω(A), ops(A),meths(A)〉, where D is a TSTN
planning domain as defined above, Q(A) is a task agenda,
ω(A) ⊆ ω(D) is the subset of entities that the agent can
manipulate, ops(A) ⊆ ops(D) and meths(A) ⊆ meths(D)
are the sets of tasks, operators, and methods for this agent.
The task agenda of a planning agent is a basic queue data
structure, which only allows tasks to be accomplished in
chronological order.

Note that the tasks of an agent A, tasks(A) ⊆ tasks(D)
is defined as

⋃
o∈ops(A) name(o) ∪ ⋃

m∈meths(A) task(m).
In other words, A can decompose a task t ∈ tasks(A) as
long as it has either an operator or a method definition for
t. Otherwise, A pauses its planning process, and requests
Arcade to find another agent that can perform t for it. When
Arcade receives such a request, Arcade sends t to the other
planning agents in the framework. If there exist one or more
agents that can achieve t, these agents can start planning for
t via their own methods and operators. For example, in the
openstacks shipping domain, we could imagine an agent that
is responsible for shipping the orders, and an agent that is
responsible for adding the products to stacks.

We define an assumption-based planning state, s, as
a collection of ground literals, facts(s), and assumptions
assumps(s). The collection of literals in an assumption-
based state describes the facts that a planning agent knows
to be either true or false. The assumptions model the beliefs
(as opposed to the knowledge) of the agent. That is, if an
assumption of the form 〈cond, cost〉 is in the agent’s state,
where cond may be a positive or negative ground literal,
this means that the agent makes a belief assertion, however,

the agent does not know whether that assertion is correct
or not. Validating that assertion is costly during planning; if
the agent’s assertion is proved to be wrong, any assumption-
based plan that is conditional on assertion must be repaired.
The cost value in the assumption estimates this cost.

An assumption-based planning state is consistent if:
(1) the known facts, facts(s) are consistent, (2) there
does not exist an assumption a⊥ ∈ assumps(s) such that
a⊥ = 〈cond, cost〉 and the negation of cond is in facts(s)
(3) the set of assumptions is consistent.

An assumption-based plan, κ, is a sequence of pairs of
the form 〈b, α〉 where b is an assumption-based state and
α is an action. Two assumption-based plans, κ1 and κ2,
are consistent if (1) κ1 and κ2 are individually consistent,
(2) κ1 and κ2 are well-formed TSTN plans, and (3) for all
(b1, α1) ∈ π1 and (b2, α2) ∈ π2, b1 and b2 are consistent.We
trivially generalize the definition of pairwise consistency to
group consistency being the case of all pairs being consistent.

A decentralized TSTN planning problem is a tuple of the
form P = (A, B0, T0) where A is the finite set of planning
agents for the decentralized planning problem. B0 is a col-
lection of initial assumption-based states such that for each
A ∈ A, there exists an assumption-based state b0(A) ∈ B0.
Similarly, T0 is a collection of TSTNs such that there is a
TSTN T0(A) ∈ T0 for each agent A ∈ A. A solution to a
decentralized TSTN planning problem P is a collection of
assumption-based plans that are consistent.

Decentralized Planning Framework
We designed our decentralized planning framework with the
following objectives in mind:
1. Asynchronous decentralization and planning: Different

Shop2 instances must be able to receive their TSTN plan-
ning problems at different points in time during decen-
tralized planning and they must be able to work on those
problems concurrently, and each at its own pace.

2. Task-centric assumption-based coordination: Shop2 in-
stances must be able to exchange subtasks during plan-
ning, based on the assumptions each makes and whether
or not a planner is capable of generating plans for specific
tasks.

3. Hierarchical localized plan adaptation and repair: Each
Shop2 instance in the decentralized planning frame-
work must use localized replanning and plan repair algo-
rithms (Goldman and Kuter 2018b) to provide consistency
and correctness over its assumptions, which might be in-
validated by the decisions and plans made by other Shop2
instances.
We will focus on objectives (1) and (2) in the rest of this

paper. We discuss objective (3) in a forthcoming, related
paper (Goldman and Kuter 2018b). Given a decentralized
TSTN planning problem P = (A, B0, T0) as defined above,
a Shop2 planning agent. Ai, starts to generate solution plans
to the tasks in its agendaQ(Ai). Initially, this agenda contains
only the initial task sequenceT0 that is specified for this agent
in the input planning problem description. Given its initial
state b0, Ai extracts a task t0 from its agenda, creates a local

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

11

TSTNplanning problemPi = (D, b0, {t0}), and calls Shop2
on this local TSTN planning problem to generate a solution
plan.

During local TSTN planning, ifAi generates a task t such
that t 6∈ tasks(Ai),2 then Ai escalates this task to Arcade,
which in turn publishes t for all of the other agents in A.
If there exists at least one other agent, say Aj , in Arcade
such that t ∈ tasks(Aj), Aj will insert t into its own task
agenda, Q(Aj). If no agent is able to generate a plan for t,
then Arcade notifiesAi andAi backtracks to consider other
alternative task decompositions. This is done by imposing a
timeout, a settable parameter, on agent-to-agent requests.

In our current system, if Ai escalates a task t to Arcade
for other agents to plan for t, Ai pauses its planning until a
response comes back. This is done to maintain a consistent
planning state throughout all the tasks in Ai’s agenda while
different planners work on different tasks at different times.
Ai incorporates the supplying agent (agentj)’s plan into its
own plans. This involves progressing the current planning
state of the Ai by applying the actions in the plan being
incorporated.

If multiple agents generate plans for t, Ai selects one of
them, and drops the others. Ai (through Arcade), informs
any un-selected agents that they can drop their plans for
t. In our current implementation, the choice over the plans
generated by the other agents is greedy: Ai selects the first
plan it receives from the other agents and rejects any other
responses. We are developing a theory for how to use the
assumption costs to make such selections. Arcade already
uses the cost of validating an assumption as a way to de-
clobber plans of different agents, if necessary (see below),
and a similar mechanism can be used as a heuristic to choose
between the plans of different agents.

In Arcade, a planning agent generates assumptions in
two cases: (1) while it is accomplishing a task and (2) the
agent generates assumptions while incorporating another
agent’s plans into its solution. We discuss these two cases
below.

Generating assumptions during planning Although our
formal discussion describes TSTNs and DTSTSs in a propo-
sitional context, Shop2 is, in fact, a lifted (first order) planner,
and performs many of its tasks using unification.

During TSTN planning for a task twith precondition p(x),
for example, if Shop2 cannot find a substitution for x satis-
fying p(x), it normally backtracks. In Arcade, we modified
this behavior so that Shop2 can generate an assumption, in-
stead of backtracking, and continuing the search with that
assumption asserted into its state representation.

For example, suppose t is a task for taking an image,
for which it must assign a UAV with appropriate instruments
(e.g., cameras). In the current state it fails to do so, because its
planning state is incomplete, and it cannot determinewhether
the suitable UAV will be available. Standard Shop2 would
backtrack at this point. In Arcade, Shop2 has the alternative

2This will happen when Ai expands a task t′ using a method
with t as a subtask.

of generating an assumption, here for example assuming that
uav1 will be available: 〈available(uav1, 1600), 1〉.

One of the key challenges for a planner is to deter-
mine whether an assumption is too specific or too general.
Most modern planning systems eagerly ground variables in
their action schemas. IPC planners typically preprocess and
ground problem specifications and domain models a priori.
Lifted planners such as Shop2 ground variables on the fly but
they do so at the first point where a ground value is matched
during search. If those variable-binding choices do not lead
to solution plans later on in search, the planner backtracks
and tries other possible groundings (Nau et al. 2003). This is
a major scalability issue, even for Shop2; as has been shown
in experiments over a decade now, Shop2’s performance can
degrade exponentially (Nau et al. 2003).

In decentralized planning, this performance degradation
is more dire because of uncertainty and incomplete infor-
mation induced due to the operations of multiple planners.
In addition, backtracking over decisions that involve other
agents is even more time-consuming than it is in centralized
planning.

In particular, an agentAi knows the set of constant symbols
inω(Ai), but it does not know aboutω(Aj) for j 6= i. Thus, it
cannot generate an assumption that involves grounded condi-
tions about other agent’s planning states. To address this chal-
lenge, we have developed a late-binding approach for Shop2
to use logical skolemization as in automated reasoning works
(Genesereth and Nilsson 1987). In particular, Shop2 delays
binding a variable symbol that appears in an assumption con-
dition; instead, Shop2 replaces it with a skolem function that
specifies the properties, as constraints, of the constant that
should be bound to that variable for a sound plan. After Ai’s
Shop2 generates a plan with skolem functions in it as a solu-
tion, Arcade post-processes the plan and generates variable
bindings according to the generated constraints during plan-
ning. Our preliminary experiments in the subsequent section
show the potential benefits of this approach. In principle,
however, post-processing may still fail to generate bindings
successfully for some of the skolem functions. In that case,
Arcade treats the binding failure as a plan-failure discrep-
ancy and triggers its plan adaptation and repair process.

Coordinating over other agents’ assumptions When a
planning agent Ai receives an assumption-based plan κj
from another agentAj and attempts to incorporate κj into its
plans, it may find that κj is inconsistent with its own plan, κi.
When merging, each agent will verify the consistency of the
plans, using the definitions given above. If an inconsistency
is found between two assumptions, Arcade compares the
cost of validating the inconsistent assumptions. If Ai’s own
cost of adapting to assumption violation is greater than those
of Aj , then Arcade notifies Aj about the contradictions
and the cost models over them, requiring Aj to adapt to its
assumptions. Otherwise, Ai casts the contradiction as a plan
discrepancy (using our plan repair framework (Goldman and
Kuter 2018b)) and adapts its own plans. InArcade, currently
all ties are broken randomly.

If agentj cannot adapt its plans to alleviate the contrac-

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

12

tion, then it returns a failure. At this point, Ai attempts to
adapt its plan even if it was deemed heuristically more costly.
If Ai generates a solution, then it incorporates it into its
assumption-based plans. Otherwise, the goal is not satisfied
and Ai returns failure.

Calculating costs of assumption violations When an
agent generates assumptions, it also rapidly calculates a
cost estimate. This estimate attempts to characterize how
much work it would be to adapt its plans (if it can at all),
if the assumption is violated. In Arcade, this is done by
a combination of plan critiquing and generating adapta-
tion options (i.e., alternative plan repairs that are differ-
ent from each other in terms of the objects used and how
the adapted tasks are accomplished). The latter is the topic
of a forthcoming paper. We have described our work on
plan critiquing in (Goldman, Kuter, and Schneider 2012;
Mueller et al. 2017) in detail; we summarize it briefly below.

Our plan critiquing system,Murphy (Goldman, Kuter, and
Schneider 2012), generates counterexamples for a Shop2
plan to explain possible breakdown cases for that plan. In
Arcade, Murphy critiques plans to assess assumption vio-
lations due to the plans and assumptions made by the other
planners in the framework. Murphy translates a plan into a
“counter-planning” problem, combining a representation of
the initial plan with the definition of a set of uncontrolled ac-
tions. These uncontrolled actions may be the actions of other
agents in the Arcade framework, actions of the exogenous
agents in the environment, either friendly, indifferent or hos-
tile, or they may be exogenous events that simply occur. The
result of this translation is a disjunctive planning problem
that we further process in order to play into the strengths of
existing classical planners. Using this formulation, a classi-
cal planner can find counterexamples that illustrate ways a
plan may go awry.

In Arcade, the translation yields a new counter-planning
problem and domain, in which goals are logically-negated
assumption conditions. For example, an assumption of the
form (cond cost) produces a goal literal of the form (¬cond).
Such counter-planning goals can then be solved to find a
counterexample or, if searched exhaustively without finding
a counterexample, indicates that no counterexample exists.
There are three components to the translation process: (1)
generating a “skeleton” for the original plan that ensures
that the original plan actions occur in the proper order; (2)
formulating a goal expression that will cause a planner to
search for a counterexample and (3) encoding the resulting
disjunctive goal expression in a way that is amenable to the
use of a standard PDDL planner.

If a counterexample is found, the agent generates multiple
adaptations of the plan, treating the counterexample as a dis-
crepancy that breaks the plan. For each of these adaptations,
the agent calculates the cost of the new plans. The adaptation
with the maximum cost is used to update the cost of violat-
ing the assumption. Intuitively, this approach calculates the
worst case that i’s plans must be adapted if they are vio-
lated by other agent’s assumptions and plans. As described
above, the cost estimate of violating the assumption is then

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	 40	 60	 80	 100	

CP
U
	T
im

es
	(s
ec
's
)	

Problem	Size	(Number	of	objectives/goals)	

Centralized	SHOP2	 Dec	SHOP2	Instance	1	 Dec	SHOP2	Instance	2	 Dec	SHOP2	Instance	3	

Figure 4: Comparison of run times using Shop2 in a centralized
fashion versus using our decentralized approach.

used to compare assumptions of differentArcade agents and
guide coordination and deconfliction of the agents’ knowl-
edge states.

Implementation and Evaluations
We have implemented our Arcade framework in Common
Lisp, using Shop2 as the planner for the planning agents.
Arcade allows an arbitrary number of planning agents; our
current experiments use a 4-planner instance of this frame-
work.We use an air-operations planning, command, and con-
trol domain, that we have developed, and which is a gener-
alization of the OpenStacks domain from the International
Planning Competition (Helmert, Do, and Refanidis 2010).
In this domain, planning operators specify air missions to
achieve a given set objectives (i.e., locations), their schedul-
ing, and resource usage to create plans that can be given
the human military operators to execute. The planning prob-
lems in this domain include a varying number of aircraft,
bases, objectives, locations on a physical map layout. Our
HTN methods encode strategies that describe how generate
groups of missions to achieve all of the objectives under
different conditions of the world.

Using the above framework, we are currently conducting
several experiments with Arcade to evaluate the approach’s
performance. Below, we present and discuss some represen-
tative results of our experiments.

Figure 4 shows our preliminary results to confirm the run-
time scalability benefits of a decentralized approach, in con-
trast to a single-agent, centralized planning. Here, we use
the same setting as described above, planning problems that
involved tens of aircraft distributed across five bases. The x-
axis shows the number of objectives we varied for evaluation
purposes.

This experiment was intended as a sanity check on our de-
centralized planning approach. Decentralized planning over
non-conflicting tasks should achieve near linear (optimal)
speed-up over centralized planning. As shown in Figure 4,
our experiments confirmed this expectation: as a function
of increasing problem size (i.e., increasing number of tasks
to be accomplished), the runtime performance of planner
nodes in the decentralized approach remains linear, whereas

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

13

0

10

20

30

40

50

60

70

80

90

1 2 5 10 15 20 25 50 75 100 150

R
un

 (C
PU

) t
im

es
 in

 s
ec

s

Number of objectives

Randomized Binding Order (# Potential Bindings vs Plan
Time ms)

Eager Late

Figure 5: Comparison of eager (original) variable binding strategy
in SHOP2’s backtracking search and late binding.

Shop2’s runtimes increase substantially.
In addition to the scalability of the overall framework,

we are also experimenting to identify which factors are key
drivers of the performance of individual Shop2 instances in
our air-operations problems. One of the factors we explored
is the impact of late-binding in the assumptions generated
during planning. Figure 5 shows the results of a prelimi-
nary experiment using the same setting as above. The x-axis
again denotes the number of objectives we have varied for
the purposes here. This experiment compares the original
eager-binding approach of Shop2 with a late-binding strat-
egy in which we randomly varied the variables that Shop2
eagerly binds and those variables it skolemizes. The results
suggest a significant performance improvement with the lat-
ter approach.

Related Work
Our work builds on the great strides on distributed, de-
centralized and multi-agent planning works over the years.
Torreño, et al. (2017) provide an excellent up-to-date sur-
vey covering historical developments and the current state
of the art. Unlike most distributed, multi-agent planning
work, which focuses on domain-independent determinis-
tic planning and heuristic search, we focus on HTN plan-
ning (Ghallab, Nau, and Traverso 2004; Nau et al. 2003;
Tate, Drabble, and Kirby 1994; Wilkins 1988). HTN plan-
ning is critical to our applications, because it permits our sys-
tem to capture doctrinal and procedural tasks, constraints and
communication strategies. Modern HTN planners also incor-
porate considerably greater expressive power than standard
IPC/PDDL-style planners. They typically include: capabili-
ties for calling attached procedures, making axiomatic infer-
ences, and performing numeric computations, all of which
are critical for this approach.

Previous work on hierarchical planning and scheduling
includes priority-based task planning for UAVs (Musliner et
al. 2011), hybrid HTN planning and scheduling (e.g., (Schat-
tenberg 2009; Elkawkagy et al. 2010; Bercher et al. 2014;
Bercher, Keen, and Biundo 2014), SharedPlans (Grosz and
Kraus 1996), multi-agent HTN planning (Dix et al. 2003;
Gancet et al. 2005; Elkawkagy and Biundo 2011), HTNs

with temporal reasoning (Goldman 2006; Fdez-Olivares et
al. 2006), and HTNs for planning under uncertainty in world
states (e.g., (Kuter et al. 2009)). Although these systems
have proven themselves on research benchmarks, they (1)
make specific, simplifying assumptions, which are also in-
dependent from each other and do not align well, (2) do not
scale up to our planning problems in the air operations plan-
ning domain, and (3) cannot perform resilient synchronized
planning.

Our work is most similar to the Shared Activity Coor-
dination (SHAC) system of Clement and Barrett (2003).
SHAC was built to support continual planning and execu-
tion for NASA missions with multiple different assets, mul-
tiple stakeholders, and limited communications. However,
the nature of the communications limitations in SHAC is
quite different from that of Arcade: theirs comes from the
physics of the domain (orbits, rotations, etc.), and is largely
predictable, whereas ours comes from unpredictable exter-
nal factors. Also, their communications issues are generally
planner to executor (probe), rather than planner to planner,
like Arcade’s. This shows in the differing nature of their
consensus approach, and in their planning agents operating
in regular cycles, unlike ours, and the SHAC agents do not
require assumption-based planning.

Existing work onMulti-Agent STRIPS (MA-STRIPS) and
its successors (Brafman and Domshlak 2008; Nissim, Braf-
man, and Domshlak 2010; Nissim and Brafman 2013) are
directly related to Arcade. MA-STRIPS’s concept of pri-
vate/public actions to define an interface among the coop-
erating agents is similar to the assignment of subtasks with
possible agents in our decentralized HTN models. One dif-
ference with formalism is that Arcade’s agents do not co-
ordinate to generate a single solution plan and interact to
satisfy its causal model during planning, as MA-STRIPS
and its successors are naturally designed to do as a classi-
cal planning approach. Instead, Arcade generates problem
decomposition and refinement via TSTN planning and each
agent generates plans for tasks. Another key difference be-
tween the MA-STRIPS family and Arcade is the concept of
commitments, where the former aims to use commitments
to ensure the correctness of the output multi-agent plan. In-
stead, Arcade treats most of the plan commitments of an
agent as assumptions and ensures correctness via plan repair
if those assumptions are broken by other agents’ plans.

Note that an approach such as MA-STRIPS may be su-
perior if the task involves taking a large planning problem
and decomposing it into multiple subproblems for computa-
tional or even execution efficiency. These approaches would
provide at least some support for automatic domain decom-
position. In Arcade, on the other hand, the domain decom-
position is assumed top be given. For a new situation, built
from scratch, that would involve additional work. Arcade,
however, was built for applications in large human organiza-
tions, where the structure of the organization and the scope
of responsibility and authority are a given and a part of the
problem to which the system must be adapted. This is why
Arcade starts from a given problem decomposition – and
indeed will adapt to the “plug and plan” addition of new
agents.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

14

Unlike other existing work that only focuses on planning
in decentralized systems, our decentralized planning archi-
tecture Arcade incorporates plan generation via HTNs with
plan adaptation and critiquing. Closest to our approach is
probably the Continuous Planning and Execution Framework
(CPEF) (Myers 1999), which responds robustly to arbitrary
changes in the world, by combining plan generation, execu-
tion monitoring, and repair capabilities. CPEF executes and
monitors its plans using PRS (Georgeff and Ingrand 1989),
and uses HTN planning from SIPE-2 (Wilkins 1988).

There are conceptual similarities between Arcade and
previous work on planning in partially-observable do-
mains (Kaelbling, Littman, and Cassandra 1998; Bertoli et
al. 2001; 2006; Kuter et al. 2007; Bonet and Geffner 2011).
Both approaches deal with high volume of uncertainty in
the planning state during planing time. The latter models
the uncertainty explicitly, by leaving it in the solution poli-
cies when it is more expensive to resolve it. Our approach
takes a chance on possibly unexpected outcomes and state
conditions by making assumptions during planning time and
appreciating the fact that those assumptions that the plans are
conditioned upon can be violated during execution. To reduce
uncertainty, Arcade then uses both (1) planning-time plan
critiquing capabilities (Goldman, Kuter, and Schneider 2012;
Mueller et al. 2017) to foresee and avoid such failures and
(2) rapid HTN plan repair algorithms (Goldman and Kuter
2018b).

Conclusions
We have described our ongoing work on decentralized plan-
ning and coordination. The basis of our approach is HTN
planning domain definitions employed by multiple HTN
planners, i.e., in this case Shop2, that may be assigned to
different tasks or may work on the same tasks in parallel. We
are currently finalizing our formalism and conducting more
experiments. We plan to investigate the performance and
stability of Arcade under varying conditions of decentral-
ization and disturbance. We will include sensitivity analyses,
varying the degree of decentralization of our problems, and
assessing the capability (problems successfully solved) and
the stability of our assumption-based planning approach. We
will also vary the rate of perturbations (external changes to
the world state, addition and deletion of new tasks) to assess
the stability/volatility of our assumption-based planning ap-
proach. We will explore ways to conduct comparisons with
existing multi-agent planning systems, MA-STRIPS in par-
ticular.

We would like to extend Arcade to cover task networks
that are not totally-ordered. Although planning algorithms
and formalisms that can model partially-ordered HTNs exist
(e.g., UMCP (Erol, Hendler, and Nau 1994), Shop2 (Nau et
al. 2003), PANDA (Bercher et al. 2017), and FAPE (Dvorak
et al. 2014)), we have limited ourselves to TSTN planning
as the basis of our formalism to simplify the criteria for
correctness for the assumption-based plans.

Another future research direction is to incorporate tempo-
ral reasoning in assumption management and coordination.
There are two aspects we plan to study: (1) the lifetime of
the assumptions themselves: e.g., “if an agent does not hear

back about an assumed condition in t time units since the as-
sumption was made, it will cease to accept the assumed truth
value”; and (2) temporal bounds on the period over which
the assumptions are supposed to hold: e.g., Ai assumes that
Aj is going to perform a particular action sometime between
the time points t1 and t2 (t2 > t1); Ai must regard this
assumption as violated if it is not confirmed by t2.”

We will investigate both directions by borrowing the con-
cept of information volatility from our previous work on
Semantic Web Service Composition planning (Au, Kuter,
and Nau 2005; Kuter et al. 2005). In this approach, tempo-
ral assumptions will model temporal uncertainty on a Shop2
instance’s assumptions made over the tasks and plans over
other planner instances in the framework. Another possible
approach, perhaps complementing the first one, is to proba-
bilistically assess the belief that a Shop2 instance has in the
assumptions regarding another planner will fulfill its com-
mitments to its tasks and plans.

Acknowledgments. The work reported in this paper
project is sponsored by the Air Force Research Labora-
tory (AFRL) under contract FA8750-16-C-0182 for the Dis-
tributed Operations program. Any opinions, findings and
conclusions, or recommendations expressed in this material
are those of the authors and do not reflect the views of the
AFRL. Cleared for public release, no restrictions.

Thanks to the anonymous referees for many helpful
suggestions that has substantially improved our original
manuscript.

References
Au, T.-C.; Kuter, U.; and Nau, D. S. 2005. Web service
composition with volatile information. In ISWC.
Bercher, P.; Biundo, S.; Geier, T.; Hoernle, T.; Nothdurft, F.;
Richter, F.; and Schattenberg, B. 2014. Plan, repair, execute,
explain-how planning helps to assemble your home theater.
In ICAPS.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017.
An admissible HTN planning heuristic. In Sierra, C., ed.,
IJCAI.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid planning
heuristics based on task decomposition graphs. In Seventh
Annual Symposium on Combinatorial Search.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001.
Planning in nondeterministic domains under partial observ-
ability via symbolic model checking. In IJCAI.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2006.
Strong Planning under Partial Observability. Artificial Intel-
ligence 170:337–384.
Bonet, B., and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In IJCAI.
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In ICAPS.
Clement, B. J., and Barrett, A. C. 2003. Continual coordi-
nation through shared activities. In AAMAS. ACM Press.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

15

Dix, J.; Muñoz-Avila, H.; Nau, D. S.; and Zhang, L. 2003.
IMPACTing SHOP: Putting an AI planner into a multi-agent
environment. Annals of Mathematics and Artificial Intelli-
gence 37(4):381–407.
Dvorak, F.; Bit-Monnot, A.; Ingrand, F.; and Ghallab, M.
2014. Plan-Space Hierarchical Planning with the Action
Notation Modeling Language. In IEEE ICTAI.
Elkawkagy, M., and Biundo, S. 2011. Hybrid multi-agent
planning. InGermanConference onMultiagent System Tech-
nologies, 16–28. Springer.
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2010. Exploiting landmarks for hybrid planning. In
25th PuK Workshop Planen, Scheduling und Konfigurieren,
Entwerfen.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In AAAI.
Fdez-Olivares, J.; Castillo, L.; Garcia-Perez, O.; and Palao,
F. 2006. Bringing users and planning technology together,
experiences in SIADEX. In ICAPS.
Gancet, J.; Hattenberger, G.; Alami, R.; andLacroix, S. 2005.
Task planning and control for a multi-uav system: architec-
ture and algorithms. In IEEE IROS.
Genesereth, M. R., and Nilsson, N. J. 1987. Logical foun-
dations of Artificial Intelligence. Springer.
Georgeff, M., and Ingrand, F. 1989. Decision-making in an
embedded reasoning system. In IJCAI.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Goldman, R. P., and Kuter, U. 2018a. Explicit stack search in
SHOP2. Technical Report 2018-1, SIFT, LLC, Minneapolis,
MN, USA.
Goldman, R. P., and Kuter, U. 2018b. Minimal perturbation
plan repair for state-space HTN planning. Technical Report
2018-2, SIFT, LLC, Minneapolis, MN, USA.
Goldman, R. P.; Kuter, U.; and Schneider, A. 2012. Using
classical planners for plan verification and counterexample
generation. In AAAI Workshop on Problem Solving Using
Classical Planning.
Goldman, R. P. 2006. Durative planning in HTNs. In ICAPS.
Grosz, B. J., and Kraus, S. 1996. Collaborative plans for
complex group action. Artificial Intelligence 86(2):269–357.
Helmert, M.; Do, M.; and Refanidis, I. 2010. Webpage for
IPC-08. Retrieved most recently May 2018.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1-2):99–134.
Kuter, U.; Sirin, E.; Parsia, B.; Nau, D.; and Hendler, J.
2005. Information gathering during planning for web service
composition. Journal of Web Semantics.
Kuter, U.; Nau, D. S.; Reisner, E.; and Goldman, R. 2007.
Conditionalization: Adapting forward-chaining planners to
partially observable environments. In ICAPS 07 Workshop
on Planning and Execution for Real-World Systems.

Kuter, U.; Nau, D.; Pistore, M.; and Traverso, P. 2009. Task
Decomposition on Abstract States for Planning under Non-
determinism. Artificial Intelligence 173:669–675.
Mueller, J. B.; Miller, C. A.; Kuter, U.; Rye, J.; and Hamell, J.
2017. A human-system interface with contingency planning
for collaborative operations of unmanned aerial vehicles.
In AIAA Information Systems-AIAA Infotech@ Aerospace
(2017-1296). AIAA Press.
Musliner, D.; Goldman, R. P.; Hamell, J.; and Miller, C.
2011. Priority-based playbook tasking for unmanned system
teams. In AIAA. American Institute of Aeronautics and
Astronautics.
Myers, K. L. 1999. A continuous planning and execution
framework. AI Magazine 63–69.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,W.;Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN planning system.
JAIR 20:379–404.
Nissim, R., and Brafman, R. I. 2013. Cost-optimal planning
by self-interested agents. In AAAI.
Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A
general, fully distributed multi-agent planning algorithm. In
AAMAS.
Schattenberg, B. 2009. Hybrid Planning And Scheduling.
Ph.D. Dissertation, Ulm University, Institute of Artificial
Intelligence. URN: urn:nbn:de:bsz:289-vts-68953.
Seuken, S., and Zilberstein, S. 2008. Formal models and
algorithms for decentralized decision making under uncer-
tainty. In AAMAS.
Tate, A.; Drabble, B.; and Kirby, R. 1994. O-Plan2: An
Architecture for Command, Planning and Control. Morgan-
Kaufmann.
Torreño, A.; Onaindia, E.; Komenda, A.; and Štolba, M.
2017. Cooperative multi-agent planning: A survey. ACM
Computing Surveys (CSUR) 50(6):84.
Wilkins, D. E. 1988. Practical Planning: Extending the
Classical AI Planning Paradigm. San Mateo, CA: Morgan
Kaufmann.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

16

HEART: HiErarchical Abstraction for Real-Time Partial Order Causal Link
Planning∗

Antoine Gréa and Laetitia Matignon and Samir Aknine

Abstract

In recent years the ubiquity of artificial intelligence raised con-
cerns among the uninitiated. The misunderstanding is further
increased since most advances do not have explainable results.
For automated planning, the research often targets speed, quality,
or expressivity. Most existing solutions focus on one criteria while
not addressing the others. However, human-related applications
require a complex combination of all those criteria at different
levels. We present a new method to compromise on these aspects
while staying explainable. We aim to leave the range of potential
applications as wide as possible but our main targets are human
intent recognition and assistive robotics. The HEART planner is a
real-time decompositional planner based on a hierarchical version
of Partial Order Causal Link (POCL). It cyclically explores the
plan space while making sure that intermediary high level plans
are valid and will return them as approximate solutions when in-
terrupted. These plans are proven to be a guarantee of solvability.
This paper aims to evaluate that process and its results compared
to classical approaches in terms of efficiency and quality.

Introduction

Since the early days of automated planning, a wide variety of
approaches have been considered to solve diverse types of prob-
lems. They all range in expressivity, speed, and reliability but
often aim to excel in one of these domains. This leads to a po-
larization of the solutions toward more specialized methods to
tackle each problem. All of these approaches have been com-
pared and discussed extensively in the books of Ghallab et al.
(2004; 2016).

Partially ordered approaches are popular for their least com-
mitment aspect, flexibility and ability to modify plans to use
refinement operations (Weld, 1994). These approaches are often
used in applications in robotics and multi-agent planning (Lemai
and Ingrand, 2004; Dvorak et al., 2014). One of the most flexi-
ble partially ordered approaches is called Partial Order Causal
Link planning (POCL) (Young and Moore, 1994). It works by
refining partial plans consisting of steps and causal links into a
solution by solving all flaws compromising the validity of the
plan.

∗Univ Lyon, Université Lyon 1, CNRS, LIRIS, UMR5205, F-69621,
LYON, France (first.lastname@liris.cnrs.fr)

Another approach is Hierarchical Task Networks (HTN)
(Sacerdoti, 1974) that is meant to tackle the problem using com-
posite actions in order to define hierarchical tasks within the plan.
Hierarchical domains are often considered easier to conceive
and maintain by experts mainly because they seem closer to the
way we think about these problems (Sacerdoti, 1975).

In our work, we aim combining HTN planning and POCL
planning in such a manner as to generate intermediary high
level plans during the planning process. Combining these two
approaches is not new (Young and Moore, 1994; Kambhampati
et al., 1998; Biundo and Schattenberg, 2001). Our work is
based on Hierarchical Partial Order Planning (HiPOP) by
Bechon et al. (2014). The idea is to expand the classical POCL
algorithm with new flaws in order to make it compatible with
HTN problems and allowing the production of abstract plans.
To do so, we present an upgraded planning framework that aims
to simplify and factorize all notions to their minimal forms. We
also propose some domain compilation techniques to reduce the
work of the expert conceiving the domain.

In all these works, only the final solution to the input problem
is considered. That is a good approach to classical planning
except when no solutions can be found (or when none exists).
Our work focuses on the case when the solution could not be
found in time or when high level explanations are preferable to
the complete implementation detail of the plan. This is done by
focusing the planning effort toward finding intermediary abstract
plans along the path to the complete solution.

In the rest of the paper, we detail how the HiErarchical Ab-
straction for Real-Time (HEART) planner creates abstract inter-
mediary plans that can be used for various applications. First, we
discuss the motivations and related works to detail the choices
behind our design process. Then we present the way we modeled
an updated planning framework fitting our needs and then we
explain our method and prove its properties to finally discuss
the experimental results.

Motivations and Potential Applications

Several reasons can cause a problem to be unsolvable. The most
obvious case is that no solution exists that meets the requirements
of the problem. This has already been addressed by Göbelbecker

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

17

et al. (2010) where “excuses” are being investigated as potential
explanations for when a problem has no solution.

Our approach deals with the cases of when the problem is
too difficult to solve within tight time constraints. For example,
in robotics, systems often need to be run within refresh rates of
several Hertz giving the process only fractions of a second to
give an updated result. Since planning is at least EXPSPACE-
hard for HTN using complex representation (Erol et al., 1994),
computing only the first plan level of a hierarchical domain is
much easier in relation to the complete problem.

While abstract plans are not complete solutions, they still
display a useful set of properties for various applications. The
most immediate application is for explainable planning (Fox et
al., 2017; Seegebarth et al., 2012). Indeed a high-level plan is
more concise and does not contain unnecessary implementation
details that would confuse a non-expert.

Another potential application for such plans is relative to do-
mains that work with approximative data. Our main example
here is intent recognition which is the original motivation for
this work. Planners are not meant to solve intent recognition
problems. However, several works extended what is called in
psychology the theory of mind. That theory is the equivalent of
asking “what would I do if I was them ?” when observing the
behavior of other agents. This leads to new ways to use inverted
planning as an inference tool. One of the first to propose that
idea was Baker et al. (2007) that use Bayesian planning to infer
intentions. Ramirez and Geffner (2009) found an elegant way
to transform a plan recognition problem into classical planning.
This is done simply by encoding temporal constraints in the plan-
ning domain in a similar way as Baioletti et al. (1998) describe
it to match the observed action sequence. A cost comparison
will then give a probability of the goal to be pursued given the
observations. Chen et al. (2013) extended this with multi-goal
recognition. A new method, proposed by Sohrabi et al. (2016),
makes the recognition fluent centric. It assigns costs to missing
or noisy observed fluents, which allows finer details and less
preprocessing work than action-based recognition. This method
also uses a meta-goal that combines each possible goal and is
realized when at least one of these goals is satisfied. Sohrabi et
al. state that the quality of the recognition is directly linked to
the quality and domain coverage of the generated plans. Thus
guided diverse planning1 was preferred along with the ability to
infer several probable goals at once.

Related Works

HTN is often combined with classical approaches since it allows
for a more natural expression of domains making expert knowl-
edge easier to encode. These kinds of planners are named de-
compositional planners when no initial plan is provided (Fox,
1997). Most of the time the integration of HTN simply consists
in calling another algorithm when introducing a composite op-
erator during the planning process. In the case of the DUET

1Diverse planning aims to find a set of 𝑚 plans that are distant of 𝑑
from one another.

planner by Gerevini et al. (2008), it is done by calling an in-
stance of an HTN planner based on task insertion called SHOP2
(Nau et al., 2003) to deal with composite actions. Some planners
take the integration further by making the decomposition of
composite actions into a special step in their refinement process.
Such works include the discourse generation oriented DPOCL
(Young and Moore, 1994) and the work of Kambhampati et al.
(1998) generalizing the practice for decompositional planners.

In our case, we chose a class of hierarchical planners based
on Plan Space Planning (PSP) algorithms (Bechon et al., 2014;
Dvorak et al., 2014; Bercher et al., 2014) as a reference approach.
The main difference here is that the decomposition is integrated
into the classical POCL algorithm by only adding new types of
flaws. This allows to keep all the flexibility and properties of
POCL while adding the expressivity and abstraction capabilities
of HTN. We also made an improved planning framework based
on the one used by HiPOP to reduce further the number of
changes needed to handle composite actions and to increase the
efficiency of the resulting implementation.

As stated previously, our goal is to obtain intermediary ab-
stract plans and to evaluate their properties. Another work has
already been done on another aspect of those types of plans.
The Angelic algorithm by Marthi et al. (2007) exploited the
usefulness of such plans in the planning process itself and used
them as a heuristic guide. They also proved that, for a given
fluent semantics, it is guaranteed that such abstract solutions can
be refined into actual solutions. However, the Angelic planner
does not address the inherent properties of such abstract plans as
approximate solutions and uses a more restrictive totally ordered
framework.

Definitions

In order to make the notations used in the paper more under-
standable we gathered them in table 1. For domain and problem
representation, we use a custom knowledge description language
that is inspired from RDF Turtle (Beckett and Berners-Lee, 2011)
and is based on triples and propositional logic. In that language
quantifiers are used to quantify variables *(x) (forall x) but can
also be simplified with an implicit form : lost(~) meaning
“nothing is lost”. For reference the exclusive quantifier we
introduced (noted ~) is used for the negation (e.g. ~(lost(_))
for “something is not lost”) as well as the symbol for nil. All
symbols are defined as they are first used. If a symbol is used
as a parameter and is referenced again in the same statement, it
becomes a variable.

Domain

The domain specifies the allowed operators that can be used to
plan and all the fluents they use as preconditions and effects.
Definition 1 (Domain). A domain is a triplet 𝒟 = ⟨𝐸𝒟, 𝑅, 𝐴𝒟⟩

• 𝐸𝒟 is the set of domain entities.
• 𝑅 is the set of relations over 𝐸𝑛𝒟. These relations are akin to

n-ary predicates in first order logic.
• 𝐴𝒟 is the set of operators which are fully lifted actions.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

18

Table 1: Our notations are adapted from Ghallab et al. (2004).
The symbol ± shows when the notation has signed variants.

Symbol Description

𝒟,𝒫 Planning domain and problem.
pre(𝑎), eff (𝑎) Preconditions and effects of the action 𝑎.
methods(𝑎) Methods of the action 𝑎.
𝜙±(𝑙) Signed incidence function for partial order plans.

𝜙− gives the source and 𝜙+ the target step of 𝑙.
No sign gives a pair corresponding to link 𝑙.

𝐿±(𝑎) Set of incoming (𝐿−) and
outgoing (𝐿+) links of step 𝑎.
No sign gives all adjacent links.

𝑎𝑠
𝑐
−→ 𝑎𝑡 Link with source 𝑎𝑠, target 𝑎𝑡 and cause 𝑐.

causes(𝑙) Gives the causes of a causal link 𝑙.
𝑎𝑎 ≻ 𝑎𝑠 A step 𝑎𝑎 is anterior to the step 𝑎𝑠.
𝐴𝑛
𝑥 Proper actions set of 𝑥 down 𝑛 levels.

𝑙𝑣(𝑥) Abstraction level of the entity 𝑥.
𝑎B± 𝑎′ Transpose the links of action 𝑎 onto 𝑎′.
𝑙 ↓ 𝑎 Link 𝑙 participates in the partial support of step 𝑎.
𝜋 ⇓ 𝑎 Plan 𝜋 fully supports 𝑎.
⤈𝑓 𝑎 Subgoal : Fluent 𝑓 is not supported in step 𝑎.
𝑎𝑏⦻𝑙 Threat : Breaker action 𝑎𝑏 threatens causal link 𝑙.
𝑎⊕𝑚 Decomposition of composite action 𝑎 using method 𝑚.
𝑣𝑎𝑟 ∶ 𝑒𝑥𝑝 The colon is a separator to be read as “such that”.
[𝑒𝑥𝑝] Iverson’s brackets: 0 if 𝑒𝑥𝑝 = 𝑓𝑎𝑙𝑠𝑒, 1 otherwise.

Example: The example domain in listing 1 is inspired from
the kitchen domain of Ramirez and Geffner (2010).

1 take(item) pre (taken(~), ?(item));
//?(item) is used to make item into
a variable.

2 take(item) eff (taken(item));
3 heat(thing) pre (~(hot(thing)),

taken(thing));
4 heat(thing) eff (hot(thing));
5 pour(thing, into) pre (thing ~(in) into,

taken(thing));
6 pour(thing, into) eff (thing in into);
7 put(utensil) pre (~(placed(utensil)),

taken(utensil));
8 put(utensil) eff (placed(utensil),

~(taken(utensil)));
9 infuse(extract, liquid, container) ::

Action; //Composite action of level 1
10 make(drink) :: Action; // Level 2

containing infuse

Listing 1: Domain file used in our planner. In order to be
concise, the methods are omitted.

Definition 2 (Fluent). A fluent 𝑓 is a parameterized statement
𝑟(𝑎𝑟𝑔1, 𝑎𝑟𝑔2, …, 𝑎𝑟𝑔𝑛) where:

• 𝑟 ∈ 𝑅 is a relation/function holding a property of the world.
• 𝑎𝑟𝑔𝑖∈[1,𝑛] ∈ 𝐸𝒟 are the arguments (possibly quantified).
• 𝑛 = |𝑟| is the arity of 𝑟.

Fluents are signed. Negative fluents are noted ¬𝑓 and behave
as a logical complement. The quantifiers are affected by the sign
of the fluents. We do not use the closed world hypothesis: fluents

are only satisfied when another compatible fluent is provided.
Sets of fluents have a boolean value that equals the conjunction
of all its fluents.

Example: To describe an item not being held, we use the
fluent ¬𝑡𝑎𝑘𝑒𝑛(𝑖𝑡𝑒𝑚). If the cup contains water, 𝑖𝑛(𝑤𝑎𝑡𝑒𝑟, 𝑐𝑢𝑝)
is true.

Plan and hierarchical representation

Definition 3 (Partial Plan / Method). A partially ordered plan
is an acyclic directed graph 𝜋 = (𝑆, 𝐿), with:

• 𝑆 the set of steps of the plan as vertices. A step is an action
belonging in the plan. 𝑆 must contain an initial step 𝐼𝜋 and
goal step 𝐺𝜋.

• 𝐿 the set of causal links of the plan as edges. We note 𝑙 =
𝑎𝑠

𝑐
−→ 𝑎𝑡 the link between its source 𝑎𝑠 and its target 𝑎𝑡 caused

by the set of fluents 𝑐. If 𝑐 = ∅ then the link is used as an
ordering constraint.

In our framework, ordering constraints are defined as the
transitive cover of causal links over the set of steps. We note
ordering constraints: 𝑎𝑎 ≻ 𝑎𝑠, with 𝑎𝑎 being anterior to its
successor 𝑎𝑠. Ordering constraints cannot form cycles, meaning
that the steps must be different and that the successor cannot
also be anterior to its anterior steps: 𝑎𝑎 ≠ 𝑎𝑠 ∧ 𝑎𝑠 ⊁ 𝑎𝑎. In
all plans, the initial and goal steps have their order guaranteed:
𝐼𝜋 ≻ 𝐺𝜋 ∧ ∄𝑎𝑥 ∈ 𝑆𝜋 ∶ 𝑎𝑥 ≻ 𝐼𝜋 ∨ 𝐺𝜋 ≻ 𝑎𝑥. If we need to
enforce order, we simply add a link without specifying a cause.
The use of graphs and implicit order constraints help to simplify
the model while maintaining its properties.

The central notion of planning is operators. Instantiated oper-
ators are usually called actions. In our framework, actions can
be partially instantiated. We use the term action for both lifted
and grounded operators.

Definition 4 (Action). An action is a parametrized tuple
𝑎(𝑎𝑟𝑔𝑠) = ⟨𝑛𝑎𝑚𝑒, 𝑝𝑟𝑒, eff , 𝑚𝑒𝑡ℎ𝑜𝑑𝑠⟩ where:

• 𝑛𝑎𝑚𝑒 is the name of the action.
• pre and eff are sets of fluents that are respectively the pre-

conditions and the effects of the action.
• 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 is a set of methods (partial order plans) that decom-

pose the action into smaller ones. Methods, and the methods
of their enclosed actions, cannot contain the parent action.

Example: The precondition of the operator 𝑡𝑎𝑘𝑒(𝑖𝑡𝑒𝑚) is
simply a single negative fluent noted ¬𝑡𝑎𝑘𝑒𝑛(𝑖𝑡𝑒𝑚) ensuring the
variable 𝑖𝑡𝑒𝑚 is not already taken.

Composite actions are represented using methods. An action
without methods is called atomic. It is of interest to note the di-
vergence with classical HTN representation here since normally
composite actions do not have preconditions nor effects. In our
case we insert them into abstract plans.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

19

Input control

In order to verify the input of the domain, the causes of the
causal links in the methods are optional. If omitted, the causes
are inferred by unifying the preconditions and effects with the
same mechanism as in the subgoal resolution in our POCL algo-
rithm. Since we want to guarantee the validity of abstract plans,
we need to ensure that user provided plans are solvable. We use
the following formula to compute the final preconditions and ef-
fects of any composite action 𝑎: pre(𝑎) = ⋃𝑎𝑠∈𝐿+(𝑎)

causes(𝑎𝑠)
and eff (𝑎) = ⋃𝑎𝑠∈𝐿−(𝑎)

causes(𝑎𝑠). An instance of the classical
POCL algorithm is then run on the problem 𝒫𝑎 = ⟨𝒟, 𝐶𝒫, 𝑎⟩ to
ensure its coherence. The domain compilation fails if POCL can-
not be completed. Since our decomposition hierarchy is acyclic
(𝑎 ∉ 𝐴𝑎, see definition 10) nested methods cannot contain their
parent action as a step.

Problem

Problem instances are often most simply described by two com-
ponents: the initial state and the goal.
Definition 5 (Problem). The planning problem is defined as a
tuple 𝒫 = ⟨𝒟, 𝐶𝒫, 𝑎0⟩ where:

• 𝒟 is a planning domain.
• 𝐶𝒫 is the set of problem constants disjoint from the domain

constants.
• 𝑎0 is the root operator of the problem which methods are

potential solutions of the problem.

Example: We use a simple problem for our example domain.
The initial state provides that nothing is ready, taken or hot and
all containers are empty (all using quantifiers). The goal is to
have tea made. For reference, listing 2 contains the problem
instance we use as an example.

1 init eff (hot(~), taken(~), placed(~), ~
in ~);

2 goal pre (hot(water), tea in cup, water
in cup, placed(spoon), placed(cup));

Listing 2: Example of a problem instance for the kitchen
domain.

The root operator is initialized to 𝑎0 = ⟨””, 𝑠0, 𝑠∗, {𝜋𝑙𝑣(𝑎0)}⟩,
with 𝑠0 being the initial state and 𝑠∗ the goal specification. The
method 𝜋𝑙𝑣(𝑎0) is a partial order plan with the initial and goal
steps linked together via 𝑎0. The initial partial order plan is
𝜋𝑙𝑣(𝑎0) = ({𝐼, 𝐺}, {𝐼

𝑠0−→ 𝑎0
𝑠∗
−→ 𝐺}), with 𝐼 = ⟨”𝑖𝑛𝑖𝑡”, ∅, 𝑠0, ∅⟩

and 𝐺 = ⟨”𝑔𝑜𝑎𝑙”, 𝑠∗, ∅, ∅⟩.

Partial Order Causal Links

Our method is based on the classical POCL algorithm. It works
by refining a partial plan into a solution by recursively removing
all of its flaws.
Definition 6 (Flaws). Flaws have a proper fluent 𝑓 and a causing
step often called the needer 𝑎𝑛. Flaws in a partial plan are either:

• Subgoals, open conditions that are yet to be supported by
another step 𝑎𝑛 often called provider. We note subgoals
⤈𝑓 𝑎𝑛.

• Threats, caused by steps that can break a causal link with
their effects. They are called breakers of the threatened link.
A step 𝑎𝑏 threatens a causal link 𝑙𝑡 = 𝑎𝑝

𝑓
−→ 𝑎𝑛 if and only

if ¬𝑓 ∈ eff (𝑎𝑏) ∧ 𝑎𝑏 ⊁ 𝑎𝑝 ∧ 𝑎𝑛 ⊁ 𝑎𝑏. Said otherwise, the
breaker can cancel an effect of a providing step 𝑎𝑝, before it
gets used by its needer 𝑎𝑛. We note threats 𝑎𝑏⦻𝑙𝑡.

Example: Our initial plan contains two unsupported subgoals:
one to make the tea ready and another to put sugar in it. In this
case, the needer is the goal step and the proper fluents are each
of its preconditions.

These flaws need to be fixed in order for the plan to be valid.
In POCL it is done by finding their resolvers.
Definition 7 (Resolvers). Classical resolvers are additional
causal links that aim to fix a flaw.

• For subgoals, the resolvers are a set of potential causal links
containing the proper fluent 𝑓 in their causes while taking the
needer step 𝑎𝑛 as their target and a provider step 𝑎𝑝 as their
source.

• For threats, we usually consider only two resolvers: demo-
tion (𝑎𝑏 ≻ 𝑎𝑝) and promotion (𝑎𝑛 ≻ 𝑎𝑏) of the breaker
relative to the threatened link. We call the added causeless
causal link a guarding link.

Example: The subgoal for 𝑖𝑛(𝑤𝑎𝑡𝑒𝑟, 𝑐𝑢𝑝), in our example,
can be solved by using the action 𝑝𝑜𝑢𝑟(𝑤𝑎𝑡𝑒𝑟, 𝑐𝑢𝑝) as the source
of a causal link carrying the proper fluent as its only cause.

The application of a resolver does not necessarily mean
progress. It can have consequences that may require reverting
its application in order to respect the backtracking of the POCL
algorithm.
Definition 8 (Side effects). Flaws that are caused by the appli-
cation of a resolver are called related flaws. They are inserted
into the agenda2 with each application of a resolver:

• Related subgoals are all the new open conditions inserted by
new steps.

• Related threats are the causal links threatened by the insertion
of a new step or the deletion of a guarding link.

Flaws can also become irrelevant when a resolver is applied.
It is always the case for the targeted flaw, but this can also affect
other flaws. Those invalidated flaws are removed from the
agenda upon detection:

• Invalidated subgoals are subgoals satisfied by the new causal
links or the removal of their needer.

• Invalidated threats happen when the breaker no longer threat-
ens the causal link because the order guards the threatened
causal link or either of them have been removed.
2An agenda is a flaw container used for the flaw selection of POCL.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

20

Example: Adding the action 𝑝𝑜𝑢𝑟(𝑤𝑎𝑡𝑒𝑟, 𝑐𝑢𝑝) causes a re-
lated subgoal for each of the preconditions of the action which
are: the cup and the water must be taken and water must not
already be in the cup.

In algorithm 1 we present a generic version of POCL inspired
by Ghallab et al. (2004).

Algorithm 1 Partial Order Planner
1 function POCL(Agenda 𝑎, Problem 𝒫)
2 if 𝑎 = ∅ then ▹ Populated agenda needs to be provided
3 return Success ▹ Stops all recursion
4 Flaw 𝑓 ← choose(𝑎) ▹ Heuristically chosen flaw
5 Resolvers 𝑅 ← solve(𝑓, 𝒫)
6 for all 𝑟 ∈ 𝑅 do ▹ Non-deterministic choice operator
7 apply(𝑟, 𝜋) ▹ Apply resolver to partial plan
8 Agenda 𝑎′ ← update(𝑎)
9 if POCL(𝑎′, 𝒫) = Success then ▹ Refining recursively

10 return Success
11 revert(𝑟, 𝜋) ▹ Failure, undo resolver application
12 𝑎 ← 𝑎 ∪ {𝑓} ▹ Flaw was not resolved
13 return Failure ▹ Revert to last non-deterministic choice

For our version of POCL we follow a refinement procedure
that works in several generic steps. In figure 1 we detail the
resolution of a subgoal as done in the algorithm 1.

The first is the search for resolver. It is often done in two
separate steps : first select the candidates and then check each of
them for validity. This is done using the polymorphic function
solve at line 5.

In the case of subgoals, variable unification is performed to
ensure the compatibility of the resolvers. Since this step is time
consuming, the operator is instantiated accordingly at this step
to factories the computational effort. Composite operators have
also all their methods instantiated at this step if they are selected
as a candidate.

Then a resolver is picked non-deterministically for applica-
tions (this can be heuristically driven). At line 7 the resolver
is effectively applied to the current plan. All side effects and
invalidations are handled during the update of the agenda at
line 8. If a problem occurs, line 11 backtracks and tries other
resolvers. If no resolver fits the flaw, the algorithm backtracks
to previous resolver choices to explore all the possible plans and
ensure completeness.

In definition 8, we mentioned effects that aren’t present in clas-
sical POCL, namely negative resolvers. All classical resolvers
only add steps and causal links to the partial plan. Our method
needs to remove composite steps and their adjacent links when
expanding them.

The Heart of the Method

In this section, we explain how our method combines POCL with
HTN planning and how they are used to generate intermediary
abstract plans.

pour(thing, into)

make(drink) tea in cup? G

drink in cup

1. Resolver candidates

tea in cup
make(drink)

2. Variable unification

3. Resolver selection

4. Resolver application

drink : tea

pour(tea, cup)

tea in cup? Gmake(tea)

tea in cup Gmake(tea)

5. Side effects search

make(tea)taken(tea)?

Figure 1: Example of the refinement process for subgoal resolu-
tion

Additional Notions

In order to properly introduce the changes made for using HTN
domains in POCL, we need to define a few notions.

Transposition is needed to define decomposition.
Definition 9 (Transposition). In order to transpose the causal
links of an action 𝑎′ with the ones of an existing step 𝑎 in a plan
𝜋, we use the following operation :

𝑎B−
𝜋 𝑎′ = {𝜙−(𝑙)

causes(𝑙)
−−−−−−→ 𝑎′ ∶ 𝑙 ∈ 𝐿−𝜋(𝑎)}

It is the same with 𝑎′
causes(𝑙)
−−−−−−→ 𝜙+(𝑙) and 𝐿+ for 𝑎 B+ 𝑎′.

This supposes that the respective preconditions and effects of
𝑎 and 𝑎′ are equivalent. When not signed, the transposition is
generalized: 𝑎B 𝑎′ = 𝑎B− 𝑎′ ∪ 𝑎B+ 𝑎′.

Example: 𝑎B−𝑎′ gives all incoming links of 𝑎with the target
set to 𝑎′ instead.
Definition 10 (Proper Actions). Proper actions are actions that
are “contained” within an entity. We note this notion𝐴𝑎 = 𝐴𝑙𝑣(𝑎)𝑎
for an action 𝑎. It can be applied to various concepts :

• For a domain or a problem, 𝐴𝒫 = 𝐴𝒟.
• For a plan, it is 𝐴0𝜋 = 𝑆𝜋.
• For an action, it is 𝐴0𝑎 = ⋃𝑚∈methods(𝑎) 𝑆𝑚. Recursively:
𝐴𝑛𝑎 = ⋃𝑏∈𝐴0

𝑎
𝐴𝑛−1𝑏 . For atomic actions, 𝐴𝑎 = ∅.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

21

Example: The proper actions of 𝑚𝑎𝑘𝑒(𝑑𝑟𝑖𝑛𝑘) are the actions
contained within its methods. The set of extended proper actions
adds all proper actions of its single proper composite action
𝑖𝑛𝑓𝑢𝑠𝑒(𝑑𝑟𝑖𝑛𝑘, 𝑤𝑎𝑡𝑒𝑟, 𝑐𝑢𝑝).
Definition 11 (Abstraction Level). This is a measure of the
maximum amount of abstraction an entity can express:3

𝑙𝑣(𝑥) = (max
𝑎∈𝐴𝑥

(𝑙𝑣(𝑎)) + 1) [𝐴𝑥 ≠ ∅]

Example: The abstraction level of any atomic action is 0
while it is 2 for the composite action𝑚𝑎𝑘𝑒(𝑑𝑟𝑖𝑛𝑘). The example
domain (in listing 1) has an abstraction level of 3.

Abstraction In POCL

The most straightforward way to handle abstraction in regular
planners is illustrated by Duet (Gerevini et al., 2008) by manag-
ing hierarchical actions separately from a task insertion planner.
We chose to add abstraction in POCL in a manner inspired by
the work of Bechon et al. (2014) on a planner called HiPOP. The
difference between the original HiPOP and our implementation
of it is that we focus on the expressivity and the ways flaw selec-
tion can be exploited for partial resolution. Our version is lifted
at runtime while the original is grounded for optimizations. All
mechanisms we have implemented use POCL but with different
management of flaws and resolvers. The original algorithm 1 is
left untouched.

One of those changes is that resolver selection needs to be
altered for subgoals. Indeed, as stated by the authors of HiPOP :
the planner must ensure the selection of high-level operators
in order to benefit from the hierarchical aspect of the domain,
otherwise, adding operators only increases the branching factor.
We also need to add a way to deal with composite actions once
inserted in the plan to reduce them to their atomic steps.
Definition 12 (Decomposition Flaws). They occur when a par-
tial plan contains a non-atomic step. This step is the needer 𝑎𝑛
of the flaw. We note its decomposition 𝑎𝑛⊕.

• Resolvers: A decomposition flaw is solved with a decom-
position resolver. The resolver will replace the needer
with one of its instantiated methods 𝑚 ∈ methods(𝑎𝑛) in
the plan 𝜋. This is done by using transposition such that:
𝑎𝑛⊕𝑚

𝜋 = ⟨𝑆𝑚∪(𝑆𝜋⧵{𝑎}), 𝑎𝑛B−𝐼𝑚∪𝑎𝑛B+𝐺𝑚∪(𝐿𝜋⧵𝐿𝜋(𝑎𝑛)).
• Side effects: A decomposition flaw can be created by the

insertion of a composite action in the plan by any resolver
and invalidated by its removal :

𝑓∈pre(𝑎𝑚)

⋃
𝑎𝑚∈𝑆𝑚

𝜋′ ⤈𝑓 𝑎𝑚

𝑙∈𝐿𝜋′

⋃
𝑎𝑏∈𝑆𝜋′

𝑎𝑏⦻𝑙
𝑙𝑣(𝑎𝑐)≠0

⋃
𝑎𝑐∈𝑆𝑚

𝑎𝑐⊕

Example: When adding the step 𝑚𝑎𝑘𝑒(𝑡𝑒𝑎) in the plan to
solve the subgoal that needs tea being made, we also introduce a
decomposition flaw that will need this composite step replaced
by its method using a decomposition resolver. In order to de-
compose a composite action into a plan, all existing links are

3We use Iverson brackets here, see notations in table 1.

transposed to the initial and goal step of the selected method,
while the composite action and its links are removed from the
plan. The main differences between HiPOP and HEART in our
implementations are the functions of flaw selection and the han-
dling of the results (one plan for HiPOP and a plan per cycle for
HEART). In HiPOP, the flaw selection is made by prioritizing
the decomposition flaws. Bechon et al. (2014) state that it makes
the full resolution faster. However, it also loses opportunities to
obtain abstract plans in the process.

Cycles

The main focus of our work is toward obtaining abstract plans
which are plans that are completed while still containing com-
posite actions. In order to do that the flaw selection function
will enforce cycles in the planning process.
Definition 13 (Cycle). A cycle is a planning phase defined as a
triplet 𝑐 = ⟨𝑙𝑣(𝑐), 𝑎𝑔𝑒𝑛𝑑𝑎, 𝜋𝑙𝑣(𝑐)⟩ where : 𝑙𝑣(𝑐) is the maximum
abstraction level allowed for flaw selection in the 𝑎𝑔𝑒𝑛𝑑𝑎 of
remaining flaws in partial plan 𝜋𝑙𝑣(𝑐). The resolvers of subgoals
are therefore constrained by the following: 𝑎𝑝 ↓𝑓 𝑎𝑛 ∶ 𝑙𝑣(𝑎𝑝) ≤
𝑙𝑣(𝑐).

During a cycle all decomposition flaws are delayed. Once
no more flaws other than decomposition flaws are present in
the agenda, the current plan is saved and all remaining decom-
position flaws are solved at once before the abstraction level
is lowered for the next cycle: 𝑙𝑣(𝑐′) = 𝑙𝑣(𝑐) − 1. Each cycle
produces a more detailed abstract plan than the one before.

Abstract plans allow the planner to do an approximate form
of anytime execution. At any given time the planner is able to
return a fully supported plan. Before the first cycle, the plan
returned is 𝜋𝑙𝑣(𝑎0).

Example: In our case using the method of intent recognition
of Sohrabi et al. (2016), we can already use 𝜋𝑙𝑣(𝑎0) to find a
likely goal explaining an observation (a set of temporally ordered
fluents). That can make an early assessment of the probability
of each goal of the recognition problem.

For each cycle 𝑐, a new plan 𝜋𝑙𝑣(𝑐) is created as a new method
of the root operator 𝑎0. These intermediary plans are not so-
lutions of the problem, nor do they mean that the problem is
solvable. In order to find a solution, the HEART planner needs
to reach the final cycle 𝑐0 with an abstraction level 𝑙𝑣(𝑐0) = 0.
However, these plans can be used to derive meaning from the
potential solution of the current problem and give a good approx-
imation of the final result before its completion.

Example: In the figure 2, we illustrate the way our problem
instance is progressively solved. Before the first cycle 𝑐2, all we
have is the root operator and its plan 𝜋3. Then within the first
cycle, we select the composite action 𝑚𝑎𝑘𝑒(𝑡𝑒𝑎) instantiated
from the operator 𝑚𝑎𝑘𝑒(𝑑𝑟𝑖𝑛𝑘) along with its methods. All
related flaws are fixed until all that is left in the agenda is the
abstract flaws. We save the partial plan 𝜋2 for this cycle and
expand 𝑚𝑎𝑘𝑒(𝑡𝑒𝑎) into a copy of the current plan 𝜋1 for the next
cycle. The solution of the problem will be stored in 𝜋0 once
found.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

22

a0

2

hot(water), tea in cup, water in cup,
placed(spoon), placed(cup)

placed (~), taken (~),
hot (~), * ~(in) *

0

make(tea)I G

1

pour(water, cup)

take(spoon)

take(cup)

Ii Gi

Im Gm
infuse(tea, water, cup)

heat(water)

taken(~)

put(spoon)

put(cup)

~(taken(spoon)) placed(spoon)

take(tea)

take(water)

pour(tea, cup)

hot(water),
water in cup

tea in cup~(taken(tea))

~(taken(water))

placed(cup)

Level 3

Figure 2: Illustration of how the cyclical approach is applied on the example domain. Atomic actions that are copied from a cycle to the
next are omitted.

Results

Theoretical

In this section, we prove several properties of our method and
resulting plans : HEART is complete, sound and its abstract
plans can always be decomposed into a valid solution.

The completeness and soundness of POCL has been proven
in (Penberthy et al., 1992). An interesting property of POCL
algorithms is that flaw selection strategies do not impact these
properties. Since the only modification of the algorithm is the
extension of the classical flaws with a decomposition flaw, all
we need to explore, to update the proofs, is the impact of the new
resolver. By definition, the resolvers of decomposition flaws will
take into account all flaws introduced by its resolution into the
refined plan. It can also revert its application properly.
Lemma (Decomposing preserves acyclicity). The decomposi-
tion of a composite action with a valid method in an acyclic
plan will result in an acyclic plan. Formely, ∀𝑎𝑠 ∈ 𝑆𝜋 ∶ 𝑎𝑠 ⊁𝜋
𝑎𝑠 ⟹ ∀𝑎′𝑠 ∈ 𝑆𝑎⊕𝑚

𝜋 ∶ 𝑎′𝑠 ⊁𝑎⊕𝑚
𝜋 𝑎′𝑠.

Proof. When decomposing a composite action 𝑎 with a
method 𝑚 in an existing plan 𝜋, we add all steps 𝑆𝑚 in
the refined plan. Both 𝜋 and 𝑚 are guaranteed to be cy-
cle free by definition. We can note that ∀𝑎𝑠 ∈ 𝑆𝑚 ∶
(∄𝑎𝑡 ∈ 𝑆𝑚 ∶ 𝑎𝑠 ≻ 𝑎𝑡 ∧ ¬𝑓 ∈ eff (𝑎𝑡)) ⟹ 𝑓 ∈ eff (𝑎). Said
otherwise, if an action 𝑎𝑠 can participate a fluent 𝑓 to the goal
step of the method 𝑚 then it is necessarily present in the ef-
fects of 𝑎. Since higher level actions are preferred during the
resolver selection, no actions in the methods are already used in
the plan when the decomposition happens. This can be noted
∃𝑎 ∈ 𝜋 ⟹ 𝑆𝑚 ⊍ 𝑆𝜋 meaning that in the graph formed both
partial plans 𝑚 and 𝜋 cannot contain the same edges therefore
their acyclicity is preserved when inserting one into the other.

Lemma (Solved decomposition flaws cannot reoccur). The ap-
plication of a decomposition resolver on a plan 𝜋, guarantees

that 𝑎 ∉ 𝑆𝜋′ for any partial plan refined from 𝜋 without revert-
ing the application of the resolver.

Proof. As stated in the definition of the methods (defini-
tion 4): 𝑎 ∉ 𝐴𝑎. This means that 𝑎 cannot be introduced in
the plan by its decomposition or the decomposition of its proper
actions. Indeed, once 𝑎 is expanded, the level of the following
cycle 𝑐𝑙𝑣(𝑎)−1 prevents 𝑎 to be selected by subgoal resolvers. It
cannot either be contained in the methods of another action that
are selected afterward because otherwise following definition 11
its level would be at least 𝑙𝑣(𝑎) + 1.

Lemma (Decomposing to abstraction level 0 guarantees solvabil-
ity). Finding a partial plan that contains only decomposition
flaws with actions of abstraction level 1, guarantees a solution
to the problem.

Proof. Any method 𝑚 of a composite action 𝑎 ∶ 𝑙𝑣(𝑎) = 1
is by definition a solution of the problem 𝒫𝑎 = ⟨𝒟, 𝐶𝒫, 𝑎⟩. By
definition, 𝑎 ∉ 𝐴𝑎, and 𝑎 ∉ 𝐴𝑎⊕𝑚

𝜋 (meaning that 𝑎 cannot re-
occur after being decomposed). It is also given by definition
that the instantiation of the action and its methods are coherent
regarding variable constraints (everything is instantiated before
selection by the resolvers). Since the plan 𝜋 only has decompo-
sition flaws and all flaws within 𝑚 are guaranteed to be solvable,
and both are guaranteed to be acyclical by the application of any
decomposition 𝑎⊕𝑚

𝜋 , the plan is solvable.

Lemma (Abstract plans guarantee solvability). Finding a par-
tial plan 𝜋 that contains only decomposition flaws, guarantees
a solution to the problem.

Proof. Recursively, if we apply the previous proof on higher
level plans we note that decomposing at level 2 guarantees a so-
lution since the method of the composite actions are guaranteed
to be solvable.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

23

From these proofs, we can derive the property of soundness
(from the guarantee that the composite action provides its effects
from any methods) and completeness (since if a composite action
cannot be used, the planner defaults to using any action of the
domain).

Experimental

In order to assess its capabilities, HEART was tested on two
criteria: quality and complexity. All tests were executed on
an Intel® Core™ i7-7700HQ CPU clocked at 2.80GHz. The
Java process used only one core and was not limited by time
or memory.4 Each experiment was repeated between 700 and
10 000 times to ensure that variations in speed were not impacting
the results.

0 1 2 3 4 5 6 7 8 9 10
0%

20%

40%

60%

80%

100%
87%

73%

Running time (ms)

Q
ua

lit
y

(p
ro

vi
di

ng
 fl

ue
nt

s)

HiPOP

POP

0
1

2
3

HEARTLV
1,429±0,39 ms
2,761±0,64 ms
3,366±0,76 ms

8,408±1,93 ms

3,214±0,66 ms

60%

Figure 3: Evolution of the quality with computation time.

Figure 3 shows how the quality is affected by the abstraction
in partial plans. The tests are made using our example domain
(see listing 1). The quality is measured by counting the number
of providing fluents in the plan ||⋃𝑎∈𝑆𝜋

eff (𝑎)||. This metric is
actually used to approximate the probability of a goal given ob-
servations in intent recognition (𝑃(𝐺|𝑂) with noisy observations,
see (Sohrabi et al., 2016)). The percentages are relative to the
total number of unique fluents of the complete solution. These
results show that in some cases it may be more interesting to
plan in a leveled fashion to solve HTN problems. For the first
cycle of level 3, the quality of the abstract plan is already of 60%.
This is the quality of the exploitation of the plan before any
planning. With almost three quarters of the final quality and
less than half of the complete computation time, the result of
the first cycle is a good quality/time compromise.

In the second test, we used generated domains. These domains
consist of an action of abstraction level 5. This action has a single
method containing a number of actions of level 4. We call this
number the width of the domain. All needed actions are built
recursively to form a tree shape. Atomic actions only have single
fluent effects. The goal is the effect of the higher level action
and the initial state is empty. These domains do not contain
negative effects. Figure 4 shows the computational profile of
HEART for various levels and widths. We note that the behavior
of HEART seems to follow an exponential law with the negative
exponent of the trend curves seemingly being correlated to the
actual width. This means that computing the first cycles has a

4The source code of HEART will be available at genn.io/heart

012345
10⁻⁴

10⁻³

10⁻²

0,1

1

10

100
-4,7574 f(x) = 146,8 x

-3,6123 f(x) = 2,821 x

-2,3642 f(x) = 0,036 x

Level

Ru
nn

in
g

ti
m

e
(s

)

Width

Figure 4: Impact of domain shape on the computation time by
levels. The scale of the vertical axis is logarithmic. Equations
are the definition of the trend curves.

complexity that is close to being linear while computing the last
cycles is of the same complexity as classical planning which is
at least P-SPACE (depending on the expressivity of the domain)
(Erol et al., 1995).

Conclusions

In this paper, we have presented a new planner called HEART
based on POCL. An updated planning framework fitting the need
for such a new approach was proposed. We showed how HEART
performs compared to complete planners in terms of speed and
quality. While the abstract plans generated during the planning
process are not complete solutions, they are exponentially faster
to generate while retaining significant quality over the final plans.
They are also proof of solvability of the problem. By using these
plans, it is possible to find good approximations to intractable
problems within tight time constraints.

References

Marco Baioletti, Stefano Marcugini, and Alfredo Milani. 1998.
Encoding planning constraints into partial order planning do-
mains. In International Conference on Principles of Knowl-
edge Representation and Reasoning, pages 608–616. Morgan
Kaufmann Publishers Inc. 00013.

Chris L. Baker, Joshua B. Tenenbaum, and Rebecca R. Saxe.
2007. Goal inference as inverse planning. In Proceedings of the
Annual Meeting of the Cognitive Science Society, volume 29.
00064.

Patrick Bechon, Magali Barbier, Guillaume Infantes, Charles
Lesire, and Vincent Vidal. 2014. HiPOP: Hierarchical Partial-
Order Planning. In European Starting AI Researcher Sympo-
sium, volume 264, pages 51–60. IOS Press.

David Beckett and Tim Berners-Lee. 2011. Turtle - Terse RDF
Triple Language. Technical report, W3C, March.

Pascal Bercher, Shawn Keen, and Susanne Biundo. 2014. Hy-
brid planning heuristics based on task decomposition graphs. In
Seventh Annual Symposium on Combinatorial Search.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

24

S. Biundo and B. Schattenberg. 2001. From abstract crisis
to concrete relief preliminary report on flexible integration on
nonlinear and hierarchical planning. In Proceedings of the Eu-
ropean Conference on Planning.

Jianxia Chen, Yixin Chen, You Xu, Ruoyun Huang, and Zheng
Chen. 2013. A Planning Approach to the Recognition of
Multiple Goals. International Journal of Intelligent Systems,
28(3):203–216. 00003.

Filip Dvorak, Arthur Bit-Monnot, Félix Ingrand, and Malik
Ghallab. 2014. A flexible ANML actor and planner in robotics.
In Planning and Robotics (PlanRob) Workshop (ICAPS).

Kutluhan Erol, James Hendler, and Dana S. Nau. 1994. HTN
planning: Complexity and expressivity. In AAAI, volume 94,
pages 1123–1128.

Kutluhan Erol, Dana S. Nau, and Venkatramana S. Subrahma-
nian. 1995. Complexity, decidability and undecidability re-
sults for domain-independent planning. Artificial intelligence,
76(1-2):75–88.

Maria Fox. 1997. Natural hierarchical planning using operator
decomposition. In European Conference on Planning, pages
195–207. Springer.

Maria Fox, Derek Long, and Daniele Magazzeni. 2017. Ex-
plainable Planning. In Proceedings of IJCAI Workshop on
Explainable AI, Melbourne, Australia, August.

Alfonso Gerevini, Ugur Kuter, Dana S. Nau, Alessandro Saetti,
and Nathaniel Waisbrot. 2008. Combining Domain-Independent
Planning and HTN Planning: The Duet Planner. In Proceedings
of the European Conference on Artificial Intelligence, volume
18, pages 573–577. 00025.

Malik Ghallab, Dana Nau, and Paolo Traverso. 2004. Auto-
mated planning: Theory & practice. Elsevier, editions. 00002.

Malik Ghallab, Dana Nau, and Paolo Traverso. 2016. Auto-
mated Planning and Acting. Cambridge University Press, edi-
tions. 00058.

Moritz Göbelbecker, Thomas Keller, Patrick Eyerich, Michael
Brenner, and Bernhard Nebel. 2010. Coming Up With Good
Excuses: What to do When no Plan Can be Found. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling, volume 20, pages 81–88. AAAI Press, May.
00036.

Subbarao Kambhampati, Amol Mali, and Biplav Srivastava.
1998. Hybrid planning for partially hierarchical domains. In
AAAI/IAAI, pages 882–888.

Solange Lemai and Félix Ingrand. 2004. Interleaving temporal
planning and execution in robotics domains. In AAAI, volume
4, pages 617–622. 00117.

Bhaskara Marthi, Stuart J. Russell, and Jason Andrew Wolfe.
2007. Angelic Semantics for High-Level Actions. In ICAPS,
pages 232–239.

Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J.
William Murdock, Dan Wu, and Fusun Yaman. 2003. SHOP2:

An HTN planning system. J. Artif. Intell. Res.(JAIR), 20:379–
404. 00891.

J Scott Penberthy, Daniel S Weld, and others. 1992. UCPOP: A
Sound, Complete, Partial Order Planner for ADL. Kr, 92:103–
114. 00000.

Miquel Ramirez and Hector Geffner. 2009. Plan recognition as
planning. In Proceedings of the International Conference on
International Conference on Automated Planning and Schedul-
ing, volume 19, pages 1778–1783. AAAI Press. 00093.

Miquel Ramirez and Hector Geffner. 2010. Probabilistic plan
recognition using off-the-shelf classical planners. In Proceed-
ings of the Conference of the Association for the Advancement
of Artificial Intelligence, volume 24, pages 1121–1126. 00099.

Earl D. Sacerdoti. 1974. Planning in a hierarchy of abstraction
spaces. Artificial intelligence, 5(2):115–135.

Earl D. Sacerdoti. 1975. The nonlinear nature of plans. Tech-
nical report, STANFORD RESEARCH INST MENLO PARK
CA.

Bastian Seegebarth, Felix Müller, Bernd Schattenberg, and Su-
sanne Biundo. 2012. Making hybrid plans more clear to hu-
man usersa formal approach for generating sound explanations.
In Proceedings of the Twenty-Second International Confer-
ence on International Conference on Automated Planning and
Scheduling, pages 225–233. AAAI Press. 00019.

Shirin Sohrabi, Anton V. Riabov, and Octavian Udrea. 2016.
Plan Recognition as Planning Revisited. In Proceedings of
the International Joint Conference on Artificial Intelligence,
volume 25. 00004.

Daniel S. Weld. 1994. An introduction to least commitment
planning. AI magazine, 15(4):27. 00775.

R. Michael Young and Johanna D. Moore. 1994. DPOCL: A
principled approach to discourse planning. In Proceedings of
the Seventh International Workshop on Natural Language
Generation, pages 13–20. Association for Computational Lin-
guistics.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

25

HTN Plan Repair Using Unmodified Planning Systems

Daniel Höller and Pascal Bercher and Gregor Behnke and Susanne Biundo
Institute of Artificial Intelligence, Ulm University, D-89069 Ulm, Germany
{daniel.hoeller, pascal.bercher, gregor.behnke, susanne.biundo}@uni-ulm.de

Abstract

To make planning feasible, planning models abstract from
many details of the modeled system. When executing plans
in the actual system, the model might be inaccurate in a crit-
ical point, and plan execution may fail. There are two op-
tions to handle this case: the previous solution can be modi-
fied to address the failure (plan repair), or the planning pro-
cess can be re-started from the new situation (re-planning). In
HTN planning, discarding the plan and generating a new one
from the novel situation is not easily possible, because the
HTN solution criteria make it necessary to take already exe-
cuted actions into account. Therefore all approaches to repair
plans in the literature are based on specialized algorithms. In
this paper, we discuss the problem in detail and introduce a
novel approach that makes it possible to use unchanged, off-
the-shelf HTN planning systems to repair broken HTN plans.
That way, no specialized solvers are needed.

1 Introduction
When generating plans that are executed in a real-world sys-
tem, the planning system needs to be able to deal with exe-
cution failures, i.e. with situations during plan execution that
are not consistent with the predicted state. Such situations
may arise for several reasons. Planning models used for de-
terministic planning have to abstract from many details of
the modeled system and the model might be inaccurate in a
critical point. Up to a certain amount of non-determinism in
the modeled system, it might also be beneficial to use deter-
ministic planners and deal with execution errors.

Two mechanisms have been developed to deal with such
failures: Systems that use re-planning discard the original
plan and generate a new one from the novel situation. Sys-
tems using plan repair adapt the original plan so that it can
deal with the unforeseen change. In classical planning, the
sequence of already executed actions implies no changes
other than state transition. The motivation for plan repair in
this setting has been efficiency (Gerevini and Serina 2000) or
plan stability (Fox et al. 2006), i.e. finding a new plan that is
as similar as possible to the original one.

In hierarchical task network (HTN) planning (Erol,
Hendler, and Nau 1996), the hierarchy has wide influence
on the set of valid solutions and it makes the formalism also
more expressive than classical planning (Höller et al. 2014;
2016). The hierarchy can e.g. enforce that certain actions

might only be executed in combination. By simply re-
starting the planning process from the new state, those im-
plications are discarded, thus simple re-planning is no option
and plans have to be repaired, i.e., the implications have to
be taken into account. Several approaches have been pro-
posed in the literature, all of them use special repair algo-
rithms to find the repaired plans.
• In this paper we give an elaborate discussion on the issues

that arise when using a re-planning approach that re-starts
the planning process from the new state in HTN planning.

• We introduce a novel transformation-based approach that
makes it possible to use unchanged, off-the-shelf HTN
planning systems to repair broken HTN plans. That way,
no specialized solvers are needed.
Next, we introduce HTN planning, specify the formal

problem, discuss issues arising when repairing HTN plans,
summarize related work, and give our transformation.

2 Formal Framework
This section first introduces HTN planning and specifies the
repair problem afterwards.

2.1 HTN Planning
In HTN planning, there are two types of tasks: primitive
tasks equal classical planning actions, which cause state
transitions. Abstract tasks describe more abstract behavior.
They can not be applied to states directly, but are iteratively
split into sub-tasks until all tasks are primitive.

We use the formalism by Höller et al. (2016). Here,
a classical planning domain is defined as a tuple Pc =
(L,A, s0, g, δ), where L is a set of propositional state fea-
tures, A a set of action names, and s0, g ∈ 2L are the initial
state and the goal definition. A state s ∈ 2L is a goal state if
s ⊇ g. The tuple δ = (prec, add , del) defines the precondi-
tions prec as well as the add and delete effects (add , del) of
actions, all are functions f : A → 2L. An action a is appli-
cable in a state s if and only if τ : A × 2L → {true, false}
with τ(a, s) ⇔ prec(a) ⊆ s holds. When an (applicable)
action a is applied to a state s, the resulting state is defined
as γ : A× 2L → 2L with γ(a, s) = (s \ del(a)) ∪ add(a).
A sequence of actions (a0a1 . . . al) is applicable in a state
s0 if and only if for each ai it holds that τ(ai, si), where
si is for i > 0 defined as si = γ(ai−1, si−1). We will call

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

26

the state sl+1 the resulting state from the application. A se-
quence of actions (a0a1 . . . al) is a solution if and only if it
is applicable in the initial state s0 and results in a goal state.

An HTN planning problem P = (L, C, A, M, s0, tnI ,
g, δ) extends a classical planning problem by a set of ab-
stract (also called compound) task names C, a set of de-
composition methods M , and the tasks that need to be ac-
complished which are given in the so-called initial task net-
work tnI . The other elements are equivalent to the classical
case. The tasks that need to be done as well as their order-
ing relation are organized in task networks. A task network
tn = (T ,≺, α) consists of a set of identifiers T . An identi-
fier is just a unique element that is mapped to an actual task
by a function α : T → A∪C. This way, a single task can be
in a network more than once. ≺ : T ×T is a set of ordering
constraints between the task identifiers. Two task networks
are called to be isomorphic if they differ solely in their task
identifiers. An abstract task can by decomposed by using a
decomposition method. A method is a pair (c, tn) of an ab-
stract task c ∈ C that specifies to which task the method is
applicable and a task network tn , the method’s subnetwork.
When decomposing a task network tn1 = (T1,≺1, α1) that
includes a task t ∈ T1 with α1(t) = c using a method
(c, tn), we need an isomorphic copy of the method’s sub-
network tn ′ = (T ′,≺′, α′) with T1∩T ′ = ∅. The resulting
task network tn2 is then defined as follows.

tn2 =((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D ={(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

We will write tn →∗ tn ′ to denote that a task network tn
can be decomposed into a task network tn ′ by applying an
arbitrary number of methods in sequence.

A task network tn = (T ,≺, α) is a solution to a plan-
ning problem P if and only if (1) all tasks are primi-
tive, ∀t ∈ T : α(t) ∈ A, (2) it was obtained via de-
composing the initial task network, tnI →∗ tn , (3) there
is a sequence (t1t2 . . . tn) of the task identifiers in T in
line with the ordering constraints ≺, and the application of
(α(t1)α(t2) . . . α(tn)) in s0 results in a goal state.

2.2 Plan Repair Problem in HTN Planning
Next we specify the plan repair problem, i.e., the problem
occurring when plan execution fails (that could be solved by
plan repair or re-planning), please be aware the ambiguity
of this term. A plan repair problem consists of three core el-
ements: The original HTN planning problem P , its original
solution plus its already executed prefix, and the execution
error, i.e., the state deviation that occurred during executing
the prefix of the original solution.

Most HTN approaches that can cope with execution er-
rors do not just rely on the original solution, but also re-
quire the modifications that transformed the initial task net-
work into the failed solution. How these modifications look
like may depend on the underlying planning system, e.g.,
whether it is a progression-based system (Nau et al. 2003;
Höller et al. 2018a) or a plan-space planner (Bercher, Keen,

con(A,C)

con(A,B) con(B ,C)

(using intermediate device/s)

con(A,B)

plug(A,B ,PA,PB)

(direct)

Figure 1: Core methods of an entertainment domain (exam-
ple from Höller et al. 2018a).

and Biundo 2014; Dvor̆ák et al. 2014). To have a general
definition, we include the so-called decomposition tree (DT)
of a given solution tn . A DT is a tree-like representation of
performed decompositions. It forms a witness for a decom-
position leading to the solution (Geier and Bercher 2011). Its
nodes represent tasks; each abstract task is labeled with the
method used for decomposing it, the children in the tree cor-
respond to the subtasks of that specific method. All ordering
constraints are also represented, such that a DT dt yields the
solution tn it represents by restricting the elements of dt to
dt’s leaf nodes.

Definition 1 (Plan Repair Problem). A plan repair problem
can now be defined as a tuple Pr = (P , tns, dt , exe, F

+,
F−) with the following elements. P is the original planning
problem. tns = (T ,≺, α) is the failed solution for it, dt
the DT as a witness that tns is actually a refinement of the
original initial task network, and exe = (t0, t1, . . . tn) is
the sequence of already executed task identifiers, ti ∈ T .
Finally, the execution failure is represented by the two sets
F+ ⊆ L and F− ⊆ L indicating the state features that were
(not) holding contrary to the expected state after execution
the solution prefix exe .

Though they have been introduced before, we want to
make the terms re-planning and plan repair more precise.

Definition 2 (Re-Planning). The old plan is discarded, a
new plan is generated starting from the current state of the
system that caused the execution failure.

Definition 3 (Plan Repair). The system modifies the non-
executed part of the original solution such that it can cope
with the unforeseen state change.

3 About Re-Planning in HTN Planning
In classical planning, a prefix of a plan that has already been
executed does not imply any changes to the environment
apart from the actions’ effects. It is therefore fine to discard
the current plan and generate a new one from scratch from
the (updated) state of the system. HTN planning provides the
domain designer a second means of modeling: the hierarchy.
Like preconditions and effects, it can be used to model both
physics or advice. Figure 1 shows (core parts of) a domain
that models the task of assembling an entertainment system.
The signal flow is thereby modeled via the hierarchy without
using any state features. This can be done by the two given
methods. When two devices A and C have to be connected
(represented by the task con(A,C)), this can be done by us-
ing a third intermediate device B, or directly by performing
a plug action. That way, devices like a TV or DVD player

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

27

someTask(safe, . . .)

doWork(. . .)open(safe) close(safe)

Figure 2: A sketch of a domain containing a pair of actions
that have to be executed either both or none.

can be treated equal to cables or adapters and the hierarchy
enforces the signal flow. Other things, like which plug fits
into which port, or which port is free, can be represented in
state. Clearly, this hierarchy represents physics, not advice.

Now imagine a situation where two devices shall be con-
nected and re-planning is performed after half of the connec-
tions. Some cables have already been connected to ports and
thus both are occupied. When re-planning does not include
these circumstances, these cables are just treated as non-free
and new cables are used. That way, resources are wasted and
in worst case, no solution can be found.

Such situations might be considered during domain de-
sign. The domain might include an unplug action, or the re-
cursive connection model can consider plugged cables be-
tween devices. However, it has to be addressed somehow.

Consider another domain where, for a certain action that
causes a safety threat, a second action has to be performed
to make the situation safe again, e.g. an action for opening
a safe. Every safe that is opened must also be closed even-
tually. This can easily be modeled as an HTN domain. A
sketch for such a domain is given in Figure 2. Though the
given domain could also be modeled using some features in
classical planning (e.g. by introducing a closed state feature
and include it in the goal definition for every safe), please
be aware that this is not always the case: Consider e.g. that
one action needs to be done as many times as a second one.
Then, there is no way to ensure it via state, since the state in
planning is usually finite. It can, however, be modeled in the
more expressive HTN formalism (Höller et al. 2016).

As we have seen in our examples, the hierarchy assures
that certain properties hold in every plan and the domain
designer might rely on these properties. There are different
ways to ensure them:
• The responsibility can be shifted to the domain designer,

i.e., the domain must be created in a way that the planning
process can be started from any state of the real-world
system. This leads to a higher effort for the domain ex-
pert and it might also be more error-prone, because the
designer has to consider possible re-planning in every in-
termediate state of the real-world system.

• The reasoning system that triggers planning and provides
the planning problem is responsible to incorporate addi-
tional tasks to make the system safe again. This shifts the
problem to the creator of the execution system. This is
even worse, since this might not even be a domain expert,
and the execution system has to be domain-specific, i.e.,
the domain knowledge is split.

• The repair system generates a solution that has the prop-
erties assured by the hierarchy. This solution leads to a
single model containing the knowledge, the planning do-

main; and the domain designer does not need to consider
every intermediate state of the real system.

Since it represents a fully domain-independent approach, we
consider the last solution to be the best. This leads us to
a core requirement of a system that solves the plan repair
problem: regardless of whether it technically uses plan re-
pair or re-planning, it needs to generate solutions that start
with the same prefix of actions that have already been exe-
cuted. Otherwise, the system potentially discards “physics”
that have been modeled via the hierarchy. Therefore we de-
fine a solution to the plan repair problem as follows.

Definition 4 (Repaired Plan). Given a plan repair problem
Pr = (P , tns, dt , exe, F

+, F−) with P = (L, C, A, M,
s0, tnI , g, δ), tns = (T ,≺, α) and exe = (t0, t1, . . . tn), a
repaired plan is a plan that (1) can be executed in s0, (2) is
a refinement of tnI , and (3) has a linearization with a pre-
fix equal to (α(t0), α(t1), . . . α(tn)) followed by tasks exe-
cutable despite the unforeseen state change.

4 HTN Plan Repair: Related Work
Before we survey practical approaches on plan repair in
HTN planning, we recap the theoretical properties of the
task. Modifying existing HTN solutions (in a way so that the
resulting solution lies still in the decomposition hierarchy) is
undecidable even for quite simple modifications (Behnke et
al. 2016) and even deciding the question whether a given se-
quence of actions can be generated in a given HTN prob-
lem is NP-complete (Behnke, Höller, and Biundo 2015;
2017). Unsurprisingly, the task given here – finding a so-
lution that starts with a given sequence of actions – is indeed
undecidable (Behnke, Höller, and Biundo 2015).

We now summarize work concerned with plan repair or
re-planning in hierarchical planning in chronological order.

One of the first approaches dealing with execution er-
rors in hierarchical planning is given by Kambhampati and
Hendler (1992). It can be characterized as plan repair, since
they repair the already-found solution with the least num-
ber of changes. Though they assume a hierarchical model,
the task hierarchy is just advice, i.e., the planning goals are
not defined in terms of an initial task network, but as state-
based goal. Abstract tasks use preconditions and effects so
that they can be inserted as well. They do not base their work
upon an execution error, such as an unexpected change of a
current situation, but instead assume that the problem de-
scription changes, i.e., the initial state and goal description.

Drabble, Dalton, and Tate (1997) introduced algorithms
to repair plans in case of action execution failure as well as
unexpected world events by modifying the existing plan.

Boella and Damiano (2002) propose a technique that they
refer to as re-planning, but the work can be seen as plan
repair according to our classification. They propose a re-
pair algorithm for a reactive agent architecture. The original
problem is given in terms of an initial plan that needs to
be refined. Repair starts with a given primitive plan. They
take back performed refinements until finding a more ab-
stract plan that can be refined into a new primitive one with
an optimal expected utility.

Warfield et al. (2007) propose the RepairSHOP system,

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

28

which extends the progression-based HTN planner SHOP
(Nau et al. 2001) to cope with unexpected changes to the
current state. Their plan repair approach shows some simi-
larities with the previous one, as they backtrack decomposi-
tions up to a point where different options are available that
allow a refinement in which the unexpected change does not
violate executability. To do this, the authors propose the goal
graph, which is a representation of the commitments that the
planner has already made to find the executed solution.

Bidot, Schattenberg, and Biundo (2008) propose a plan
repair algorithm to cope with execution errors. The same
basic idea has later been described in a more dense way re-
lying on a simplified formalism (Biundo et al. 2011). Their
approach also shows similarities to the previous two, as they
also start with the failed plan and take planning decisions
back, starting with those that introduced failure-associated
plan elements, thereby re-using much of the planning effort
already done. The already executed plan elements (steps and
orderings) are marked with so-called obligations, a new flaw
class in the underlying flaw-based planning system.

The previous plan repair approach has later been simpli-
fied further by Bercher et al. (2014; 2017). Their approach
uses obligations to state which plan elements must be part
of any solution due to the already-executed prefix. In con-
trast to the approaches given before, it starts with the initial
plan and searches for refinements that achieve the obliga-
tions. Technically, it can be regarded re-planning, because
it starts planning from scratch and from the original initial
state while ensuring that new solutions start with the already
executed prefix. The approach was implemented in the plan-
space-based planning system PANDA (Bercher, Keen, and
Biundo 2014) and practically in use in the described assem-
bly scenario, but never systematically evaluated empirically.

The most recent approach for HTN plan repair that we
are aware of is by Barták and Vlk (2017). It focuses on
scheduling, i.e., the task of allocating resources to actions
and scheduling their execution time. In case of an execution
error (a changed problem specification), they find another
feasible schedule. They perform backjumping (i.e., conflict-
directed backtracking) to find repaired solutions.

All these approaches address execution errors by a spe-
cialized algorithm. In the next section, we propose a novel
approach that solves the problem without relying on special-
ized algorithms. Instead, it encodes the executed plan steps
and the execution error into a standard HTN problem, which
allows to use standard HTN solvers instead.

5 Plan Repair via Domain Transformation
Technically, the task is similar to our work on Plan Recogni-
tion as Planning (Höller et al. 2018b). The approach is based
on two transformations, one of them enforces HTN plans to
start with a prefix of observations.

Let Pr = (P , tns, dt , exe, F+, F−) be the plan
repair problem and P = (L,C,A,M, s0, tnI , g, δ) with
δ = (prec, add , del) the original HTN planning prob-
lem, exe = (a1, a2, . . . , am) the sequence of already ex-
ecuted actions, and F+ ∈ 2L and F− ∈ 2L the set
of the unforeseen positive and negative facts, respectively.
Then we define the following HTN planning problem P ′ =

a → ta
a

ta

a′ta

Figure 3: The original method (left) contains the action a
that is part of the already executed prefix. This task is re-
placed by a new abstract task ta (middle) and two new meth-
ods are added that decompose ta either in a or in a′ (right).

(L′, C ′, A′,M ′, s′0, tn
′
I , g
′, δ′) with δ′ = (prec′, add ′, del ′)

that solves the plan repair problem.
First, a sequence of new propositional symbols is intro-

duced that indicate the position of some action in the en-
forced plan prefix. We denote these facts by li with 0 ≤ i ≤
m and li 6∈ L and define the new set of propositional state
features as L′ = L ∪ {li | 0 ≤ i ≤ m}.

For each task ai with 1 ≤ i < m − 1 in the prefix of
executed actions, a new task name a′i is introduced with
prec′(a′i) 7→ prec(ai)∪{li−1}, add ′(a′i) 7→ add(ai)∪{li}
and del ′(a′i) 7→ del(ai)∪ {li−1}. The last action in the exe-
cuted prefix am needs to have additional effects, it performs
the unforeseen state change. prec′(a′m) 7→ prec(am) ∪
{lm−1}, add ′(a′m) 7→ (add(am) \ F−) ∪ F+ ∪ {lm} and
del ′(a′m) 7→ del(am) ∪ F− ∪ {lm−1}. The original prob-
lem is placed after the prefix, i.e., ∀a ∈ A holds that
prec′(a) 7→ prec(a) ∪ {lm}. And the new set of actions
is defined as A′ = A ∪ {a′i | 1 ≤ i ≤ m}. To make the first
action of the prefix applicable in the initial state, the sym-
bol l0 is added, i.e., s′0 = s0 ∪ {l0}. To reuse the already
executed actions, ensure that every solution starts with the
entire prefix, i.e. g′ = g ∪ {lm}.

The newly introduced actions now need to be made reach-
able via the hierarchy. Since they simulate their duplicates
from the prefix of the original plan, the planner should be al-
lowed to place them at the same positions. This can be done
by introducing a new abstract task for each action appearing
in the prefix, replacing the original action at each position it
appears, and adding methods such that this new task may be
decomposed into the original or the new action. A schema
of the transformation is given in Figure 3. Formally, it is de-
fined in the following way.
C ′ = C ∪ {c′a | a ∈ A}, c′a 6∈ C ∪A,
M c = {(c, (T ,≺, α′)) | (c, (T ,≺, α)) ∈M}, where

∀t ∈ T with α(t) = n and α′(t) =
{
n, if n ∈ C
c′n, else.

Ma = {(c′a, ({t}, ∅, {t 7→ a})) | ∀a ∈ A},
So far the new abstract tasks can only be decomposed into
the original action. Now we allow the planner to place the
new actions at the respective positions by introducing a new
method for every action in exe = (a1, a2, . . . , am), decom-
posing a new abstract task c′ai

into the executed action ai:
Mexe = {(c′ai

, ({t}, ∅, {t 7→ a′i})) | ai ∈ exe}. The set
of methods is defined as M ′ = M c ∪Ma ∪Mexe and all
elements of P ′ have been specified.

Like the approach given by Bercher et al. (2014), our
transformation is technically a hybrid between re-planning

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

29

(the planning process is started from scratch), but the sys-
tem generates a solution that starts with the executed prefix
and incorporates constraints induced by the hierarchy. Since
it enforces the properties by using a transformation, the sys-
tem that generates the actual solution can be a standard HTN
planning system. For future work, it might be interesting to
adapt the applied planning heuristic to increase plan stability
(though this would, again, lead to a specialized system).

6 Conclusion
In this paper we introduced a novel approach to repair
broken plans in HTN planning. We elaborated that sim-
ply re-starting the planning process is no option since this
would discard changes implied by the hierarchical part of
the model. Instead, systems need to come up with a new
plan that starts with the actions that have already been ex-
ecuted. All systems in the literature tackle the given prob-
lem by modifying the applied planning system. We provided
a compilation-based approach that enables the use of un-
changed HTN planning systems. In future work, we want
to empirically evaluate the feasibility of our approach.

Acknowledgments
This work was partly done within the technology trans-
fer project “Do it yourself, but not alone: Companion-
Technology for DIY support” of the SFB/TRR 62 funded
by the German Research Foundation (DFG).

References
Barták, R., and Vlk, M. 2017. Hierarchical task model forre-
source failure recovery inproduction scheduling. In Proc. of
the 15th Mexican Int. Conf. on AI (MICAI 2016), 362–378.
Springer.
Behnke, G.; Höller, D.; Bercher, P.; and Biundo, S. 2016.
Change the plan – How hard can that be? In Proc. of ICAPS
2016, 38–46. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the com-
plexity of HTN plan verification and its implications for plan
recognition. In Proc. of ICAPS 2015, 25–33. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2017. This is a
solution! (. . . but is it though?) – Verifying solutions of hier-
archical planning problems. In Proc. of ICAPS 2017, 20–28.
AAAI Press.
Bercher, P.; Biundo, S.; Geier, T.; Hörnle, T.; Nothdurft, F.;
Richter, F.; and Schattenberg, B. 2014. Plan, repair, exe-
cute, explain – How planning helps to assemble your home
theater. In Proc. of ICAPS 2014, 386–394. AAAI Press.
Bercher, P.; Höller, D.; Behnke, G.; and Biundo, S. 2017.
Companion Technology – A Paradigm Shift in Human-
Technology Interaction. Cognitive Technologies. Springer.
chapter 5: User-Centered Planning, 79–100.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid planning
heuristics based on task decomposition graphs. In Proc. of
SoCS 2014, 35–43. AAAI Press.
Bidot, J.; Schattenberg, B.; and Biundo, S. 2008. Plan repair
in hybrid planning. In Proc. of the 31st German Conf. on AI
(KI 2008), 169–176. Springer.

Biundo, S.; Bercher, P.; Geier, T.; Müller, F.; and Schatten-
berg, B. 2011. Advanced user assistance based on AI plan-
ning. Cognitive Systems Research 12(3-4):219–236.
Boella, G., and Damiano, R. 2002. A replanning algo-
rithm for a reactive agent architecture. In Proc. of the 10th
Int. Conf. on AI: Methodology, Systems, and Applications
(AIMSA 2002), 183–192. Springer.
Drabble, B.; Dalton, J.; and Tate, A. 1997. Repairing plans
on-the-fly. In Proc. of the NASA workshop on Planning and
Scheduling for Space, 13–1–13–8.
Dvor̆ák, F.; Barták, R.; Bit-Monnot, A.; Ingrand, F.; and
Ghallab, M. 2014. Planning and acting with temporal and hi-
erarchical decomposition models. In Proc. of the 26th IEEE
Int. Conf. on Tools with AI (ICTAI 2014), 115–121. IEEE.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity results for HTN planning. Annals of Mathematics and
Artificial Intelligence 18(1):69–93.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In Proc. of ICAPS
2006, 212–221. AAAI Press.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proc. of IJCAI 2011, 1955–
1961. AAAI Press.
Gerevini, A., and Serina, I. 2000. Fast plan adaptation
through planning graphs: Local and systematic search tech-
niques. In Proc. of the 5th Int. Conf. on AI Planning Systems
(AIPS 2000), 112–121. AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.
In Proc. of ECAI 2014, 447–452. IOS Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the expressivity of planning formalisms through
the comparison to formal languages. In Proc. of ICAPS
2016, 158–165. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018a. A
generic method to guide HTN progression search with clas-
sical heuristics. In Proc. of ICAPS 2018. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018b.
Plan and goal recognition as HTN planning. In Proc. of the
AAAI Workshop on Plan, Activity, and Intent Recognition
(PAIR 2018).
Kambhampati, S., and Hendler, J. A. 1992. A validation-
structure-based theory of plan modification and reuse. Arti-
ficial Intelligence 55:193–258.
Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 2001.
The SHOP planning system. AI Magazine 22(3):91–94.
Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: an HTN planning
system. JAIR 20:379–404.
Warfield, I.; Hogg, C.; Lee-Urban, S.; and Muñoz-Avila, H.
2007. Adaptation of hierarchical task network plans. In
Proc. of the 20th Int. Florida AI Research Society Conf.
(FLAIRS 2007), 429–434. AAAI Press.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

30

Programmatic Task Network Planning

Felix Mohr and Theodor Lettmann and Eyke Hüllermeier and Marcel Wever

{firstname.lastname}@upb.de
Paderborn University
Warburgerstrae 100

33098 Paderborn

Abstract

Many planning problems benefit from extensions of classi-
cal planning formalisms and modeling techniques, or even
require such extensions. Alternatives such as functional
STRIPS or planning modulo theories have therefore been pro-
posed in the past. Somewhat surprisingly, corresponding ex-
tensions are not available for hierarchical planning, despite
their potential usefulness in applications like automated ser-
vice composition. In this paper, we present programmatic
task networks (PTN), a formalism that extends classical HTN
planning in three ways. First, we allow both operations and
methods to have outputs instead of only inputs. Second, for-
mulas may contain interpreted terms, in particular interpreted
predicates, which are evaluated by a theory realized in an ex-
ternal library. Third, PTN planning allows for a second type
of tasks, called oracle tasks, which are not resolved by the
planner itself but by external libraries. For the purpose of il-
lustration and evaluation, the approach is applied to a real-
world use case in the field of automated service composition.

Introduction
It has been known for a long time that defining a planning
problem often means to strategically organize the search
space instead of only describing what is possible. In the ini-
tial version of PDDL, this was called the “advise” facet of
the definition as opposed to the “physics”, which are neu-
tral and only describe what is possible in a domain. And
as anticipated, new paradigms such as functional STRIPS
(Geffner 2000), numerical planning (Hoffmann 2003), and,
more recently, planning modulo theories (Gregory et al.
2012) and planning with the creation of constants (Weber
2009) emerged and significantly improved the language ex-
pressivity, the solver efficiency or even both.

Unfortunately, these extensions have not (or only
marginally) been transferred to hierarchical planning. One
of the main areas of application of hierarchical planning is
automated software composition, and specifically that plan-
ning domain would strongly benefit from these extensions.
More precisely, we are interested in three extensions:

1. Constant Creation. Planning actions should be allowed to
add new objects to the environment as in (Weber 2009) or
(Mohr 2017).

2. Interpreted Predicates. Preconditions of methods should
be allowed to contain predicates whose truth value can

be evaluated using background theories (and the state);
this is very similar to the PDDL extension proposed in
(Gregory et al. 2012).

3. Oracle Tasks. For some tasks, it is cumbersome to model
its possible refinements by traditional HTN methods, e.g.,
deciding how to partition a set. Oracle tasks are like primi-
tive tasks that are not linked to operators but to an external
function that computes its possible applications itself.
In parts, these features have been already implemented

in the SHOP2 planning system (Nau et al. 2003). SHOP2
allows for so called external calls, which allow to invoke
external routines, which, in a way, can be used to interpret
predicates and resolve oracle tasks. However, the concrete
abilities of SHOP2 in this aspect have not been documented
or discussed in scientific literature, so its formal scope is
somewhat unclear.

In this paper, we realize these three extensions for hier-
archical planning and merge them into a framework we call
programmatic task network (PTN) planning. While the first
two aspects are rather a transfer of existing classical plan-
ning approaches to hierarchical planning, a mechanic like
oracle tasks is, to the best of our knowledge, a novelty of
our approach.

One question we are particularly after is whether these
extensions yield practical advantages. That is, we want to see
whether problems can (i) be expressed in a more compact
way and (ii) be solved more efficiently in terms of runtime.

To this end, we present a case study in the area of au-
tomated machine learning. In fact, the idea of applying hi-
erarchical planning to automated machine learning was our
main motivation to extend classical HTN planning. While
we do not claim that PTN is relevant for most or even all
hierarchical planning domains, the formalism should be rel-
evant also for other problems in the sub-field of automated
service composition. Since the case study is a real-world ex-
ample, a side-contribution of the paper is to demonstrate the
application of AI planning to a real use case.

Motivation and Running Example
Automated Machine Learning
Our extension of HTN is mainly motivated by the idea of
tackling automated machine learning (AutoML) as a plan-
ning problem. AutoML is a recent research direction in

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

31

Figure 1: Task networks allow for composing pipelines in a
flexible way, and for configuring their elements.

machine learning, which aims at (partly) automating the
process of developing a machine learning solution specifi-
cally tailored for a concrete data set (Thornton et al. 2013;
Feurer et al. 2015). Here, a solution is understood as an
“ML pipeline”, that is, the selection, composition, and
parametrization of algorithms for training a predictor on
the data. The latter includes, for example, methods for data
pre- and post-processing, induction of a classifier, etc. The
pipeline takes the data set as an input and produces a pre-
dictor as an output. The quality of a pipeline is measured in
terms of the (estimated) generalization performance of the
predictor, i.e., its predictive accuracy on new data. This qual-
ity may strongly vary between different pipelines.

Our idea is to build an ML pipeline with a hierarchical
task network. The point of departure is a single task such as
classify. This task can be refined recursively by iteratively
prepending preprocessing steps and eventually choosing the
concrete algorithms and their parametrization. For example,
as shown in Figure 1, one could decide to have preprocessing
steps before the classifier (left branch), i.e., the node classify
is replaced by a sequence consisting of two nodes prepro-
cess and classify. The node preprocess could then in turn be
refined into two times preprocessData and once preprocess-
Features. Alternatively, it could be decided that no prepro-
cessing is used (right branch).

Configuring Multi-Class Classifiers
For illustration, we consider a simplified version of the Au-
toML problem, in which we focus on the configuration
of a single element of the pipeline, namely the classifica-
tion algorithm, while ignoring other steps (such a pre- and
post-processing). More specifically, consider the problem of

Figure 2: Classification problem with instances as points
x ∈ R2 and four classes. The meta-class {A,B} can easily
be separated from {C,D} by a linear classifier (solid line).
SeparatingD from {A,B,C} is more difficult (dashed line).

training a classifier h : X −→ Y , where X is an instance
space (set of data objects) and Y = {y1, . . . , yK} a set of
K > 2 classes. So-called decomposition techniques reduce
this problem to a set of binary classification problems, i.e.,
the training of a set of simple classifiers that can only distin-
guish between two classes. In so-called nested dichotomies
(NDs), the reduction is achieved by recursively splitting the
set of classes Y into two subsets (Frank and Kramer 2004).

Formally, a nested dichotomy can be represented by a
binary tree, in which every node n is labeled with a set
c(n) ⊆ Y of classes, such that the root is labeled with Y , and
c(n) = c(n1)∪̇c(n2) for every inner node n with successors
n1 and n2. Every inner node is associated with a binary clas-
sifier that seeks to discriminate between the “meta-classes”
c(n1) and c(n2). At prediction time, a new object to be clas-
sified is submitted to the root and, at every inner node, sent
to one of the successors by the binary classifier associated
with that node; the class assigned is then given by the leaf
node reached in the end.

A simple illustration with four classes is given in Fig. 2.
Obviously, the dichotomy ((A,B), (C,D)) would be a good
choice for this problem, since all classification problems in-
volved ({A,B} versus {C,D}, A versus B, C versus D)
can be solved quite accurately with a simple linear classifier.
The dichotomy ((A,D), (B,C)), on the other hand, would
lead to rather poor performance, because the classifier in the
root will make many mistakes ({A,D} cannot easily be sep-
arated from {B,C}). The dichotomy (A, (B, (C,D))) will
produce a mediocre result.

In this paper, we configure nested dichotomies using hier-
archical planning, assuming that the base learner for solv-
ing binary problems is a linear support vector machine. Even
this reduced configuration problem is rather challenging. In
fact, the problem of finding a dichotomy that is optimal for
a given set of data and for a fixed base learner comes down
to searching the space of all dichotomies, and the size of this
space is (2n− 3)!! for n classes (Frank and Kramer 2004).1

1Here, !! is the double factorial, not taking the factorial twice.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

32

Configuring nested dichotomies hierarchically seems nat-
ural: Starting at the root, the splits are configured iteratively
until every leaf node is labeled with exactly one class. In
other words, a “complex” problem such as training a clas-
sifier for classes {A,B,C,D} is (recursively) refined into
simpler problems, such as training a classifier for classes
{A,B} and training a classifier for classes {C,D} (and
appropriately combining the two). Each of these problems
again defines a classification task, which is solved in the
same way (even though other techniques could be applied
in principle).

The Baseline: The Classical HTN Formalization
We now explain how the configuration of such NDs can be
encoded as a classical hierarchical planning problem. The
formalization ensures that each ND is constructed exactly
once. We need three operators, corresponding to primitive
tasks:

1. init(n, x , lc, rc,nc)
Pre: x ∈ n ∧ •(lc) ∧ τ(lc, rc) ∧ τ(lc,nc)
Post:

∧
true → x ∈ rc ∧ bst(x , rc) ∧ sst(x , rc)
∀xn : xn ∈ n ∧ xn 6= x → xn ∈ lc
∀x2, xo : x 6= x2∧x2 ∈ n∧sst(x, n)∧ (xo /∈ n∨xo >
x2)→ sst(x2, lc)
∀xs : sst(xs ,n) ∧ xs 6= x → sst(x , lc)
¬ • (lc) ∧ •(nc)

2. shift(y , x , l , r)
Pre: x ∈ l ∧ bst(y , r)
Post: x ∈ r ∧ bst(x, r) ∧ ¬x ∈ l ∧ ¬bst(y, r)

3. close(l , lw , r , rw)
Pre: lw ∈ l ∧ rw ∈ r
Post: ∅
Intuitively, the idea behind these operators is to split up

the labels of a node until every leaf node is labeled with a
single class. A node is refined by creating two child nodes
(via the init operator), where initially all classes except one
(x) of the parent are in the left child. Then, we can use the
shift operator to move single classes from the left to the right
child. The predicates bst and sst are used to memorize the
biggest and smallest elements of nodes, which is necessary
to avoid mirroring NDs, i.e. one separating A,B from C,D
and the other C,D from A,B The close operator can be
used to guarantee the existence of at least one class in each
of the children, which are the “witnesses” lw and rw; this
guarantess soundness of solutions.

The relatively complicated notation of the • and τ predi-
cates is to efficiently simulate the creation of objects. The
idea is that there is a counter for the next newly cre-
ated constant, which is shifted whenever an object is “cre-
ated”; the state of this counter is maintained with •. The
initial state then needs to contain some successor chain
τ(c0 , c1), .., τ(cn−1 , cn) that indicates the order in which
the constants are created. Here, n iconstants may be cre-
ated (the n + 1-th constant cannot be created, because no
successor is known for it). Hence, it is actually possible to
simulate the creation of objects with the only limitation that

some bound n for the number of such objects needs to be set.
Previous approaches for simulating output creation (Klusch,
Gerber, and Schmidt 2005) have used a different, simpler,
encoding, which leads to a blow-up of the search space as
analyzed in our experimental evaluation section.

While one may object that outputs are then only syntac-
tical sugar, we would argue that a native support for out-
puts is quite desirable in both the problem formalization and
the implementation of tools. On the theoretic side, allow-
ing for outputs is naturally a good thing because this consti-
tutes a specific planning problem, which is generally unde-
cidable even without hierarchies (Hoffmann et al. 2009). On
the practical side, planning is precisely about offering syn-
tax (and semantics) to simplify the specification of a special
kind of search problem. There are planning domains, in par-
ticular software configuration, where outputs are first-class
citizens. In HTN planning, simulating the constant creation
not only complicates the description of operations but also
propagates to methods as can be seen below. Hence, outputs
alone may not justify an implementation of an entirely new
planner but motivate the support of outputs as part of the
problem description.

We need two tasks with five methods to complete the
specification. The first task is refine(n), which means that
the classes of node n shall be split up somehow. The sec-
ond task is config(l , r), which means that classes are to be
moved from the left to the right child of some node. There
are three methods for refine(n):

1. finalSplit(n, x , y , l , r , s)
Pre: x ∈ n, y ∈ n, y > x , •(l), τ(l , r), τ(r , s)
TN: init(n, lc, rc, y)

2. isolatingSplit(n, x , l , r , s)
Pre: x ∈ n, •(l), τ(l , r), τ(r , s)
TN: init(n, l , r , y)→ refine(l)

3. doubleSplit(n, x , y , l , r , s)
Pre: x ∈ n, y ∈ n, y > x ,¬sst(x ,n), •(l), τ(l , r), τ(r , s)
TN: init(n, l , r , y)→ shift(y , x , l , r) → config(l , r)
→ refine(l)→ refine(r)

There are two methods for config(l , r), which are
1. shiftElementAndConfigure(l , r , x , y)

Pre: x ∈ l , bst(y , r), x > y
TN: shift(x, y, l, r)→ config(l, r)

2. closeSetup(l , lw , r , rw)
Pre: lw ∈ l , rw ∈ r
TN: close(l, lw, r, rw)

The initial task network is then {refine(root)}, where the
initial state s0 defines root and the ordering of classes. That
is, s0 = ϕ(C) ∧ ∧x∈C(x ∈ root), where C is the set of
classes and ϕ maps C to an arbitrary explicit total order of
items of C, e.g., the lexicographical order. The latter one is
important to maintain the bst and sst predicates.

PTN Planning Formalism
Basic Planning Elements
As for any planning formalism, our basis is a logic lan-
guage L and planning operators defined in terms of L. The

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

33

language L has first-order logic capacities, i.e., it defines
an infinite set of variable names, constant names, predicate
names, function names and quantifiers and connectors to
build formulas. A state is a set of ground literals; i.e., it does
not contain unquantified variable symbols. We do not adopt
the closed-world assumption.

Like in planning modulo theories (Gregory et al. 2012),
constants, functions, and a subset of the predicates of L are
taken from a theory. A theory T defines constants, func-
tions, and predicates and how these are to be interpreted.
Predicates not contained in T behave like normal predicates
in classical planning. That is, L consists of the elements of
T together with uninterpreted predicates and constants. In
the formalism, we use T as a formula itself.

An operator is a tuple 〈nameo , Io ,Oo ,Po ,E
+
o ,E

−
o 〉

where nameo is a name, Io andOo are parameter names de-
scribed inputs and outputs, Po is a formula from L constitut-
ing its preconditions and E+

o and E−o are sets of conditional
statements α→ β where α is a formula over L conditioning
the actual effect β, which is a set of literals from L to be
added or removed. Free variables in Po must be in Io and
free variables in E+

o and E−o must be in Io ∪Oo.
The semantics of the planning domain are as follows. An

action is an operator whose input and output variables have
been replaced by constants; we denote Pa ,E

+
a , and E−a as

the respectively replaced preconditions and effects. An ac-
tion a is applicable in a state s under theory T iff s, T |= Pa

and if none of the output parameters of a is contained in s.
Applying action a to state s changes the state in that, for all
α→ β ∈ E+

a , β is added to s if s, T |= α; analogously, β is
removed if such a rule is contained in E−a . A plan for state
s0 is a list of actions 〈a0, .., an〉 where ai is applicable and
applied to si; here, si+1 is obtained by applying ai to si.

To summarize, the main difference in the basic planning
formalism to classical planning is that operators have ex-
plicit outputs and that some predicates are not only evaluated
from the state itself but the state together with some theory.
Having theories available to evaluate expressions, predicates
in the preconditions and effects may also contain terms oth-
ers than simple variables. None of the two aspects is new by
itself since output parameters have been considered in auto-
mated service composition previously (Weber 2009), and in-
terpreted predicates have been considered prior to planning
modulo theories (Gregory et al. 2012) through the notion of
functional STRIPS (Geffner 2000).

Programmatic Task Networks
On top of this basic planning formalism, we now build a hi-
erarchical model (Alford et al. 2016). A task network (HTN)
is a partially ordered set T of tasks. A task t(v0, .., vn) is a
name with a list of parameters, which are variables or con-
stants from L. A task named by an operator is called prim-
itive, otherwise it is complex. A task whose parameters are
constants is ground.

The goal of HTN planning is to derive a plan for a given
initial state and task network. That is, instead of reaching a
goal state from the initial state (as in classical planning), we
iteratively refine a given partial solution (the task network)
until only primitive tasks are left.

While primitive tasks are realized canonically by an op-
eration, complex tasks need to be decomposed by methods.
A method m = 〈namem, tm, Im, Om, Pm, Tm〉 consists of
its name, the (non-primitive) task tm it refines, the input and
output parameters Im and Om, a logic formula Pm ∈ L that
constitutes the method’s precondition, and a task network
Tm that realizes the decomposition. The preconditions may,
just as in the case of operations, contain interpreted predi-
cates and functional symbols from the theory T .

An method instantiation m is a method where inputs and
outputs have been replaced by planning constants. m is ap-
plicable in a state s under theory T iff s, T |= Pm and if
none of the output parameters of m is contained in s.

Leaving apart the different outputs of operations and
methods and the functional elements in formulas, the defi-
nition of a PTN planning problem is analogous to the one
of classical HTN planning. That is, a PTN planning problem
is a tuple 〈O,M, s0, N〉 where O is a set of operations as
above, M is a set of methods, s0 is the initial state, and N
is a task network. The conditions for a plan π = 〈a1, .., an〉
that is applicable in s0 being a solution to a PTN problem
〈O,M, s0, N〉 are inductive based on three cases:

1. N is empty. π is a solution if it is empty
2. N has a primitive task t without predecessor in N . π is

a solution if a1 realizes t and is applicable in s0 and if
〈a2, .., an〉 is a solution to 〈O,M, τ(s0, a1), N \ {t}〉.

3. N has a complex task t without predecessor in N . π is a
solution if there is an instantiation m̂ of a methodm ∈M
that is applicable in s0 yielding a refined network N ′, and
π is a solution to 〈O,M, s0, N

′〉.
Note that these cases are not mutually exclusive unless N is
totally ordered.

The above HTN formalization extends classical HTN
planning by object creation and interpreted predicates.

In PTN, we allow a third type of tasks we call oracle tasks.
An oracle task t is a (primitive or complex) task that is as-
sociated with functions ϕt that generate sets of solutions (in
the spirit of the above definition of a solution) to the sub-
problem 〈O,M, s, {t}〉. A programmatic task network is a
hierarchical task network that may contain oracle tasks.

The notion of oracle tasks is an entirely algorithmic one
and does not affect the semantic of the planning problem.
The idea of oracle tasks is that the planner does not solve
them by himself but outsources the computation of solutions
to its oracle functions. In a sense, oracle tasks play the role
of “complex” primitive tasks. They are primitive, because
they are ground to actions within one planning step, but they
are also complex, because they are not necessarily replaced
by a single action but a sequence. However, with respect to
the definition of a solution, oracle tasks are simply treated
as primitive or complex, so whether a task is oracle does not
affect the set of solutions to it.

Discussion
Prior to proceeding, we would like to discuss two aspect of
PTN. First, what is the relation between using oracle tasks
and interleaving planning and execution? Second, is using
both interpreted predicates and oracles redundant?

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

34

The main difference between using oracle tasks and inter-
leaving planning and execution is that the latter one is usu-
ally done to determine the successor state resulting from a
given action. That is, the action that is going to be executed
is fixed by the planner. Oracle tasks, in contrast, actually out-
source a part of the planning (and decision) logic itself to the
function bound to it.

The relation between interpreted predicates and oracles
is complementary. On one hand, interpreted predicates are
useful to ease the formalization process of a planning prob-
lem. On the other hand, oracle tasks aim at shortcutting some
parts of the planning process and possibly prune alternatives.
Of course, one can also achieve the same pruning effect
using interpreted predicates, and this can sometimes make
sense. However, we simply see the two concepts as used for
different purposes and with different times of coming into
action: Interpreted predicates enrich the formalization lan-
guage, and oracles decrease the runtime of the planner. We
also consider this aspect in our experimental evaluation.

Describing PTN Planning Problems
Unfortunately, there is no standard language to describe hi-
erarchical planning problems as PDDL is for classical plan-
ning. One attempt to create such a language was made with
ANML (Smith, Frank, and Cushing 2008), but it has not
evolved to a standard. All existing HTN planners use their
own format, so there is no commonly agreed point of refer-
ence which can serve as a basis for our extension. In a sense,
the SHOP2 planner has created some kind of implicit pro-
prietary standard (Nau et al. 2003). As a consequence, de-
scribing the way how PTN planning problems are described
would come down to explaining the input syntax for our spe-
cific planner.

Hence, our format is proprietary, and we rather refer the
reader to the technical documentation of the planner, which
formally describes the syntax for describing the planning
problems. In fact, the description language only puts a spe-
cific syntax for the formal items discussed above. The whole
planning problem is defined in just one file with several sec-
tions for types, constants, operations, methods, and oracles
respectively. There is no added value in describing this syn-
tax in detail at this point.

However, we briefly want to discuss the definition of in-
terpreted predicates and oracles since this is something tech-
nically new. As in (Gregory et al. 2012), interpreted terms
are described in an extra file, one for each theory. Predicates
that do not occur in any of these files are supposed to be not
interpreted. Oracles are described by 6-tuples as follows:

[Oracles]

rpnd; refineND(n,lc,rc); n; lc,rc; card(n) > 1; rpnd.sh

cbnd; refineND(n,lc,rc); n; lc,rc; card(n) > 1; cbnd.sh

In this notation—where fields are separated by the ;
symbol—, the first entry defines the name of the oracle, the
second one the task addressed by the oracle followed by the
input and output parameters, the precondition, and the exter-
nal library that will be called to conduct the refinement. Note
that our implementation is in Java and external libraries are
either executable by the used operating system and invoked

in a new process or Java classes implementing a specific in-
terface, which, of course, is more performant.

We require that interpreted predicates are not only asso-
ciated with an evaluation function but also with a ground
truth function. For a given state, the ground truth function
computes all possible groundings to objects of the state for
which it evaluates to true. That is, a predicate cannot only
be evaluated for a fixed ground parameters but they can
even be queried for valid groundings. An example where
this becomes important is the ssubset predicate used in the
following formalization; this predicate simply realizes the
strict subset relation. The planner has not even information
about possible candidates s for which it should evaluate
ssubsets(s, p), but the underlying set theory can inspect the
object p in the state and generate objects representing the
possible subsets.

In practice, it is not necessary to define methods for com-
plex oracle tasks. The planner will not treat oracle tasks it-
self, so there is no reason to formalize the methods that can
be used to refine it for the planner. In any case, the external
libraries are specifically designed for a particular planning
problem and usually only create valid solutions by construc-
tion. Since those libraries usually do not apply a planning
algorithm themselves, a description of the available meth-
ods (or even the whole planning domain) can be omitted un-
less the libraries explicitly require those for whatever reason.
Since PMT does not verify the correctness of the oracles’ an-
swers using the existing methods but simply trusts that they
are correct, the formalization is optional and can be rather
seen as a documentation.

We now explain how the nested dichotomy creation prob-
lem can be formalized as a PTN problem. We only need one
primitive task (and operation) and one complex task (with
two methods). The primitive task and its corresponding op-
eration are responsible for configuring a specific split.
config(p, s; lc, rc)
Pre: ∅
Post: ∀x : x ∈ s → x ∈ lc,∀x : x ∈ p ∧ x /∈ s → x ∈ rc

The operation has two inputs and two outputs. The first in-
put p is the node that is to be refined and the second one, s,
corresponds to a specification of a subset of the elements of
s that will appear in the left child. The outputs lc and rc are
the data containers for the left and right child node respec-
tively. Note that we do not need any precondition, because
this action will only be used in a plan if other (method) pre-
conditions were checked before. Since those method precon-
ditions are sufficient, there is no need to formalize the actual
preconditions of the action again. This effect of “shifted”
preconditions is not special to our example but is common
in HTN planning.

In addition to this operation, we need one complex task
refine(n) for which we have two methods:

1. doRefine(n, s, lc, rc)
Pre: ssubset(s, p) ∧ !empty(s) ∧min(s) = min(p)
TN: config(n, s, lc, rc)→ refine(lc)→ refine(rc)

2. closeNode(n)
Pre: card(n) = 1
TN: ∅

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

35

The first method is to conduct an actual refinement of a node
where the second is responsible only to detect that a node
has already been refined to the end and can be closed. Once
again, the comparison of the minimum element is needed to
avoid so called mirrored dichotomies that are actually iden-
tical modulo switching the left and the right child of a node
(see above formalization).

The preconditions of the methods only contain interpreted
terms. All predicates are from a standard set theory as in
(Gregory et al. 2012), so the dichotomy problem doesn’t
require a special theory. Note that, for the case of the first
method, the strict subset condition plus the requirement that
s is not empty implicitly requires that card(p) ≥ 2.

In PTN-Plan, the complex task will be resolved using
an oracle. Consider the precondition predicate ssubset(s, p)
and suppose there are no oracles for the task. When deter-
mining the applicable groundings of the operation, the plan-
ner must branch over all possible subsets s of p, i.e. 2|p| − 1
many candidates. This is usually infeasible even for very
small p, because the planner must consider this exponential
number of candidates not only once but also subsequently
when analyzing possible successor nodes. Hence, PTN-Plan
outsources the task grounding to an oracle task, which only
produces a small number of these candidates. In our evalua-
tion, we consider both cases to illustrate this effect.

A PTN Planner
We adopt a modification of forward decomposition (Ghal-
lab, Nau, and Traverso 2004). In a nutshell, a rest prob-
lem in forward decomposition is a state together with a task
network. Of course, initially, this is the initial state s0 and
the initially given task network N . Forward decomposition
means to take one of the tasks in N that have no predeces-
sors and resolve it either to an operation (if primitive) or to
a new task network (if complex). Our planner, PTN-Plan, is
written in Java. The implementation is available for public 2.

The classical forward decomposition algorithm must be
modified in three ways. We discuss these modifications in
detail in the subsequent sections.

Treating Output Variables
Even though outputs are motivated by operation outputs,
the point where they become relevant in the algorithm
are methods. While the constants are actually created
by some action, methods need to talk over those out-
puts in order to establish a reasonable data flow in the
task network they induce. For example, if we have a
task refineND(nd) where nd is an object repre-
senting a nested dichotomy, we may have a method
configureAndRefineRecursively(nd,lc,rc)
with an induced totally ordered task network
crtAndConfig(nd,lc,rc) -> refineND(lc)
-> refineND(rc), which is supposed to create two
subsequent dichotomies lc and rc and distribute the
elements of nd over them. So in fact, it is already clear at
the method level that lc and rc will be produced elements
and are not available yet.

2URL hidden during review phase

PTN-Plan stores the outputs of a method in opaque data
containers. With respect to the planning formalism, data
containers are nothing special but ordinary planning con-
stants. Intuitively, data containers are what variable names
are in typical imperative programming. That is, the container
object itself is rather a reference to real semantic object than
the object itself. PTN-Plan maintains a counter of newly cre-
ated objects and labels them newVar1, newVar2, ... For
this reason, it is forbidden to use constants with such a name
in the problem description in order to avoid confusion.

In particular in the presence of theories, one may be in-
terested in “complex” objects. In planning modulo theories,
planning constants are not only some names but actually
string representations of more complex objects such as a set.
For example, the string “{a, b, c}” could be a planning
constant with an intended meaning, which is obviously not
known to the planner but only to the theory.

Even though PTN-Plan uses names for output objects in-
stead of serializations according to some theory, more pre-
cise information about the container may become available
later. The concrete value stored of data container, e.g., “{a,
b, c}” will be determined by an action but usually not
the method instance itself. So at the time of determining
the method instance itself, it is not possible to say anything
about the contents of a data container. But this is also not
a problem, because the content description can be easily
added using equality. For example, an operation can have
an effect saying o1 = union(i1,i2) where union is
a term from the set theory and i1,i2, and o1 are inputs
and outputs. Since i1 and i2 are known, the concrete se-
rialization can be computed using the theory libraries as in
(Gregory et al. 2012).

Treating Interpreted Terms
The point where interpreted terms become relevant to PTN-
Plan is when it determines the method instantiations or ac-
tions that are applicable in a state. Both were defined to
be applicable if their preconditions are satisfied in the state
module the underlying theory T .

Since the evaluation of interpreted predicates is poten-
tially costly, PTN-Plan first evaluates the “normal” predi-
cates. This process already implies a binding of most (and
often all) of the variables of a method or operation, and the
interpreted predicate has only to be checked for given pa-
rameters instead of determining for which of a given set of
possible parameters it holds.

Unlike in planning modulo theories (Gregory et al. 2012),
PTN-Plan does not evaluate interpreted terms. That is, PTN-
Plan only distinguishes between predicates and terms but
does not make a difference between primitive terms (con-
stants) and complex ones (possibly nested expressions). In
any case, both are simply string representations encoding
some element of the respective theory and need to be de-
coded by the external library. At this point, we do not see
any reason to have two different representations for the same
constant within the planning calculus. Of course, PTN-Plan
can be extended in this regard if we observe that collapsing
a term to a simpler constant is useful in terms of runtime.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

36

Technically, PTN-Plan supports the evaluation of inter-
preted predicates in two ways. First, PTN-Plan comes with
a Java interface which can be implemented by a Java class
used to evaluate a predicate. This is the most performant so-
lution, because no new process needs to be spawned for the
evaluation. For compatibility with external libraries, how-
ever, PTN-Plan also supports the call of stand-alone exe-
cutable files. In that case, PTN-Plan expects the result of the
evaluation (and nothing else) to be returned on the standard
output stream; clearly, this variant is much slower.

Treating Oracle Tasks
When selecting an oracle task, PTN-Plan calls the respective
oracle library and blocks until a set of solutions for the task
arrives. As for interpreted terms, PTN-Plan supports Java or-
acle classes that implement a specific interface or external
libraries that return the set of solutions (and nothing else) in
a specific format over the output stream.

The oracle library is invoked with the reduced rest prob-
lem as its main parameter. The reduced rest problem is de-
fined by the current state and the oracle task as the only task;
the subsequent tasks are irrelevant.

Once the solutions have arrived, PTN-Plan creates one
successor for each of the sub-solutions. The rest problem
of those successors is the state that results from applying
the respective sub-solution to the previous state, and the task
network is simply the one of the previous rest problem with-
out the resolved oracle task.

A subtle twist that has not been discussed so far is the
fact that the oracle library may want to conduct an informed
search, too. That is, PTN-Plan adopts a best-first search and
uses some domain-specific source of information to com-
pute the f-values of the nodes, and that source of information
should be also available to the oracle libraries. However, this
is no problem, because the common source of information
can be stored as a resource, e.g., a file name, in a constant
of the planning state. The oracle can then inspect that con-
stant and acquire the desired information. In particular, no
additional channel of communication is required.

A Brief Analysis of PTN-Plan
Correctness and Completeness
Assuming the correctness of solutions returned by oracles,
the correctness of PTN-Plan is straight forward. The overall
correctness of a solution π for the problem 〈O,M, s0, N〉
follows from induction over the solution length n. PTN-Plan
only returns an empty solution (n = 0) if N = ∅, which is
correct. For n > 0, the first action a1 of the solution is either
inserted individually as the result of resolving a primitive
task, or it is part of a sub-solution 〈a1, .., ak〉 generated by
an oracle for a (complex) oracle task. The first case only
occurs if PTN-Plan chose a primitive task t ∈ N realized by
a1 and t is not preceeded by any other task in N ; PTN-Plan
only chooses a1 if it is applicable. The second case only
occurs if N has an oracle task not preceeded by any other
task in N ; the sub-solution 〈a1, ..ak〉 was then created by an
oracle and is correct by assumption. In any case, the length

of the solution to the rest problem is smaller than n; so the
correctness of PTN-Plan follows from induction.

PTN-Plan is complete for problems without oracles or for
oracles that create all solutions that exist for a single oracle
task. This follows again by induction over the length of so-
lution π = 〈a1, .., an〉 for a problem 〈O,M, s0, N〉. Three
cases are possible. First, there is a primitive non-oracle task
t ∈ N realized by a1 without predecessor in N ; PTN-Plan
considers a1 as a possible refinement. Second, there is an or-
acle task t ∈ N without predecessor to which 〈a1, .., al〉 is a
solution. Then, by assuming that oracles create all solutions,
PTN-Plan obtains 〈a1, .., al〉 from some oracle. Third, there
is a complex non-oracle task t ∈ N without predecessor in
N . There is a refinement N ′ of N obtainable by the applica-
tion of applicable method instantiations m1, ..,mk such that
π is still a solution and that has no complex non-oracle task
without predecessor in N ′. But PTN-Plan considers these
method instantiations in that order such that eventually one
of the first two cases applies. In any case, PTN-Plan will
eventually arive at a sub-solution 〈a1, .., al〉 and a problem
for which a solution 〈al+1, .., an〉 exists and which is found
by the induction hypothesis.

However, since it is precisely the purpose of oracles to
prune parts of the search space that seem irrelevant to them,
PTN-Plan is not complete in general. That is, there are so-
lutions that are not contained in the search graph of PTN-
Plan. By the above analysis on completeness, this is the case
if and only if the set of solutions created by the union of
oracles defined for a task is a strict subset of the actual so-
lution set. Consequently, oracle tasks can be used to trade
completeness for search efficiency.

Heuristic Search
PTN-Plan adopts a best-first-epsilon algorithm to conduct
the search over the graph induced by the planning problem.
In our domains, A* is typically not applicable, because the
criterion that is subject to optimization is not the plan length
but some other qualitative property of the solutions that of-
ten does not decompose in an additive way over the edges of
the search graph. For example, we cannot estimate the pre-
diction accuracy of a nested dichotomy in an additive way
over the search path.

As most hierarchical planners, PTN-Plan is not equipped
with a built-in heuristic. We are aware of two planners with a
built-in heuristic we are aware of. One is PANDA (Bercher
and others 2015), and the other is Hierarchical Goal Net-
work Planning (HGN) (Shivashankar et al. 2012; 2013;
Shivashankar, Alford, and Aha 2017), which uses landmarks
to compute a heuristic for the hierarchical planning problem.
On the code level, PTN-Plan has an interface for the node
evaluation function, which can be used to setup a problem-
specific f -function. In principle, this f could also be addi-
tive, so the idea of PANDA could be used in PTN-Plan in
principle if the actual cost measure is additive.

Experimental Evaluation
To assess the role of the different extensions to the over-
all performance, we compare not only HTN with PTN-Plan

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

37

Dataset # PTN HTN + IP HTN + C HTN PTN HTN + IP HTN +C HTN
car 4 0,72 3,11 • 4,47 • 4,38 • 22,00 75,78 • 113,20 • 98,94 •
page-blocks 5 5,50 23,00 • 39,50 • 30,67 • 52,00 326,50 • 743,00 • 522,00 •
analcat 6 2,32 9,94 • 22,89 • 22,47 • 68,91 307,29 • 561,33 • 539,42 •
segment 7 6,74 79,84 • 46,12 • 47,47 • 89,52 1.327,05 • 891,29 • 891,29 •
zoo 7 1,79 1,65 3,22 • 2,92 • 72,07 146,35 • 106,67 • 87,38 •
autoUni 8 6,26 69,25 • 28,21 • 26,73 • 91,83 817,60 • 205,53 • 194,27 •
cnae9 9 277,18 - - - 111,82 - - -
mfeat-fourier 10 25,24 - 117,18 • 123,87 • 121,56 - 335,91 • 338,43 •
optdigits 10 36,82 - 167,68 • 165,85 • 95,18 - 173,32 • 178,25 •
pendigits 10 16,33 - 93,92 • 92,88 • 102,92 - 346,92 • 347,33 •
yeast 10 8,83 137,50 • 21,00 • 20,67 • 153,67 1.361,50 • 295,80 • 265,00 •
vowel 11 3,44 - 31,50 • 22,14 • 111,11 - 994,83 • 361,71 •
audiology 24 11,78 - 118,69 • 116,21 • 235,50 - 849,85 • 740,05 •
letter 26 41,32 - - - 219,40 - - -
kropt 28 141,55 - - - 405,00 - - -

Table 1: Comparison of PTN-Plan with other extensions of HTN planning. The column entitled with # shows the number of
classes for the respective dataset. The left main column reports the average runtime to the first solution in seconds. The second
main column reports the number of nodes generated. A hyphen means that no solution was found in the timeout.

but also with other variants. More precisely, we consider the
version of HTN but with constant creation or efficient cre-
ation simulation (HTN + CC) and the version of HTN with
both constant creation and interpreted predicates (HTN +
IP). That is, PTN and HTN + IP use the above formalization
that adopts interpreted predicates; PTN outsources the refine
task to an oracle (described below). HTN and HTN + CC
use the initial formalization without interpreted predicates.
In the case of plain HTN, the generation of objects is sim-
ulated naively and without the encoding shown in the first
formalization; a formalization like this was used in (Klusch,
Gerber, and Schmidt 2005).

The BF-ε search is informed by a simple f-function that
completes the partial dichotomies using a technique called
RPND (Leathart, Pfahringer, and Frank 2016) and then com-
putes the performance of that dichotomy. Note that this f is
not optimistic but rarely overestimates the optimal cost by
large margin. The ε is considered as an absolute value (in-
stead of a relative one) of 1% accuracy tolerance. The same
technique is used by the oracles to generate a moderate num-
ber of possible refinements.

Our evaluation is based on a couple of datasets of different
numbers of classes. This is because the search graph struc-
ture and size highly depends on the number of classes. In the
general HTN encoding, the search graph size grows in a fac-
torial order with the number of classes. Note that even if we
use oracles and their massive pruning, the search space still
grows quite rapidly simply because more decisions must be
made in total; in fact, even the run time of a hill climber
increases as least linearly. The datasets are from a well-
known repository called UCI (Asuncion and Newman 2007)
and are used frequently to evaluate the performance of algo-
rithms that create nested dichotomies (Leathart, Pfahringer,
and Frank 2016). All the datasets are available at http:
//openml.org.

Planning for AutoML pipelines is afflicted much more by
random effects than planning in other domains due to intrin-

sic randomized aspects. The main sources of randomness are
the splits made on the given data set. That is, to check the
quality of a solution, the data set is initially split into two
parts, the so called training set, which is used to guide the
search, and test set, which is used to evaluate the quality of a
solution (by comparing the dichotomy’s prediction for each
of these instances with the true class). In our experiments,
this split is always 70%/30%. The choice of this split has
paramount effects on the evaluation of the candidates, so it
is necessary to consider not only one such split but several
ones in order to get a more stable estimate. Also, the evalua-
tion during search makes such splits which is why the eval-
uation of nodes is always subject to a certain degree of ran-
domness. Since the search itself is not aware of the random
nature of these values, it is important to obtain a relatively
stable estimate for the mean, which is then the ultimate goal
of optimization.

As a consequence, we report the mean values over 25 ex-
periments for each data set. Table 1 shows the results of
our computations. The computations were executed on 16
Linux machines in parallel, each of which with a resource
limitation of 16 cores (Intel Xeon E5-2670, 2.6Ghz) and
16GB memory. Each experiment was conducted on a asso-
ciated with a timeout of 5 minutes. We do not report the
solution quality since this is not an important measure for
the comparison of the search space exploration. However,
we briefly summarize that PTN-Plan never produced signif-
icantly worse solutions than any of the other algorithms.

PTN-Plan clearly dominates each of the other algorithm
variants in both runtime and node generation. Significant im-
provements (5%-threshold in t-test) are indicated by •. For
three of the problems, it is the only algorithm that identifies
the solution within the given time bound. PTN-Plan gener-
ates only half the number of nodes as standard HTN on all
dataset and sometimes 10 times less (page-blocks).

The improvement of PTN-Plan over HTN + IP motivates
the use of oracle tasks in this context. Interpreted predicates

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

38

allow for a very simple problem specification but yield an
exponential number of successors for the refinement nodes,
which frequently produces memory overflows. In PTN, only
a small subset of those nodes is actually created, which
makes it much more scalable.

These results, though rather preliminary, strongly moti-
vate the usage of oracles in hierarchical planning. It is not at
all clear that general purpose heuristics, despite all their ad-
vantages, can achieve the same performance as obtained us-
ing oracles (with very domain-specific heuristic knowledge).
For the time-being, no such heuristics are in sight.

Conclusion
We have introduced an extension to classical HTN planning
called PTN (Programmatic Task Networks) that connects the
planner with external libraries in the form of logic theories
and oracles. The theories are used to evaluate function terms
and predicates that may occur in the preconditions of op-
erations and methods. Oracles are used by the planner to
outsource the generation of sub-solutions for specific tasks.
We have conducted an experimental evaluation in the area
of automated machine learning (AutoML), which was also
our motivation to use (and extend) hierarchical planning.
While the concrete problem of creating a nested dichotomy
can also be solved easily without planning, HTN is a great
framework to describe the construction mechanism of more
general machine learning pipelines; PTN of HTN paves the
way for a more efficient construction of those pipelines.

Open issues are on both theoretical and practical sides.
Theoretically, it would be interesting to learn more about
the possibility to transfer general heuristics from classical
planning or HTN planning to PTN. On the practical side,
PTN-Plan is still very preliminary and only supports totally
ordered networks, so there is also a great deal of engineering
research ahead.

Acknowledgements This work was partially supported
by the German Research Foundation (DFG) within the Col-
laborative Research Center “On-The-Fly Computing” (SFB
901).

References
Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and
Aha, D. W. 2016. Hierarchical planning: Relating task and
goal decomposition with task sharing. In Proc. IJCAI, 3022–
3029.
Asuncion, A., and Newman, D. 2007. UCI machine learning
repository.
Bercher, P., et al. 2015. Hybrid planning theoretical founda-
tions and practical applications.
Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.;
Blum, M.; and Hutter, F. 2015. Efficient and robust auto-
mated machine learning. In Advances in Neural Information
Processing Systems, 2962–2970.
Frank, E., and Kramer, S. 2004. Ensembles of nested di-
chotomies for multi-class problems. In Machine Learn-
ing, Proceedings of the Twenty-first International Confer-
ence (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004.

Geffner, H. 2000. Functional strips: a more flexible language
for planning and problem solving. In Logic-Based Artificial
Intelligence. Springer. 187–209.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.
Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning modulo theories: Extending the planning paradigm. In
Proceedings of the Twenty-Second International Conference
on Automated Planning and Scheduling, ICAPS 2012, Ati-
baia, São Paulo, Brazil, June 25-19, 2012.
Hoffmann, J.; Bertoli, P.; Helmert, M.; and Pistore, M.
2009. Message-based web service composition, integrity
constraints, and planning under uncertainty: A new connec-
tion. Journal of Artificial Intelligence Research 35:49–117.
Hoffmann, J. 2003. The metric-ff planning system: Translat-
ing“ignoring delete lists”to numeric state variables. Journal
of Artificial Intelligence Research 20:291–341.
Klusch, M.; Gerber, A.; and Schmidt, M. 2005. Semantic
web service composition planning with owls-xplan. In Pro-
ceedings of the 1st Int. AAAI Fall Symposium on Agents and
the Semantic Web, 55–62.
Leathart, T.; Pfahringer, B.; and Frank, E. 2016. Building
ensembles of adaptive nested dichotomies with random-pair
selection. In Proceedings of the European Conference on
Machine Learning and Knowledge Discovery in Databases,
179–194.
Mohr, F. 2017. Towards automated service composition un-
der quality constraints. Ph.D. Dissertation, Paderborn Uni-
versity.
Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: an HTN planning
system. J. Artif. Intell. Res. (JAIR) 20:379–404.
Shivashankar, V.; Alford, R.; and Aha, D. W. 2017. Incor-
porating domain-independent planning heuristics in hierar-
chical planning. In AAAI, 3658–3664.
Shivashankar, V.; Kuter, U.; Nau, D. S.; and Alford, R.
2012. A hierarchical goal-based formalism and algorithm
for single-agent planning. In Proc. AAMAS, 981–988.
Shivashankar, V.; Alford, R.; Kuter, U.; and Nau, D. S.
2013. The godel planning system: A more perfect union
of domain-independent and hierarchical planning. In IJCAI,
2380–2386.
Smith, D. E.; Frank, J.; and Cushing, W. 2008. The anml
language. In Proc. KEPS.
Thornton, C.; Hutter, F.; Hoos, H. H.; and Leyton-Brown,
K. 2013. Auto-WEKA: combined selection and hyperpa-
rameter optimization of classification algorithms. In The
19th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD 2013, Chicago, IL,
USA, 847–855.
Weber, I. M. 2009. Semantic Methods for Execution-level
Business Process Modeling: Modeling Support Through
Process Verification and Service Composition. Springer.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

39

Tracking Branches in Trees – A Propositional Encoding for Solving
Partially-Ordered HTN Planning Problems

Gregor Behnke and Daniel Höller and Susanne Biundo
Institute of Artificial Intelligence, Ulm University, D-89069 Ulm, Germany

{gregor.behnke, daniel.hoeller, susanne.biundo}@uni-ulm.de

Abstract

Planning via SAT has proven to be an efficient and versa-
tile planning technique. Its declarative nature allows for an
easy integration of additional constraints and can harness the
progress made in the SAT community without the need to
adapt the planner. However, there has been only little atten-
tion to SAT planning for hierarchical domains. To ease encod-
ing, existing approaches for HTN planning require additional
assumptions, like non-recursiveness or totally-ordered meth-
ods. Both limit the expressiveness of HTN planning severely.
We propose the first propositional encodings which are able
to solve general, i.e., partially-ordered, HTN planning prob-
lems, based on a previous encoding for totally-ordered prob-
lems. The empirical evaluation of our encoding shows that it
outperforms existing HTN planners significantly.

Introduction
Hierarchical Task Network (HTN) planning (Erol, Hendler,
and Nau 1996) is a versatile planning formalism, which has
been used in many practical applications (Nau et al. 2005;
Straatman et al. 2013; Champandard, Verweij, and Straat-
man 2009; Dvorak et al. 2014). It extends classical plan-
ning by introducing abstract tasks in addition to primitive
(classical) actions. They represent portfolios of more com-
plex courses of action which – if executed – achieve the ab-
stract task. Decomposition methods map abstract tasks to
partially-ordered sets of other tasks (that might be primi-
tive or abstract) – and by that express the connection be-
tween higher- and lower-levels of action abstraction. De-
composition is continued until all tasks are primitive and
these actions can be executed in the initial state. This de-
compositional structure is a powerful way to describe the set
of possible solutions, making HTN planning more expres-
sive than classical planning (Erol, Hendler, and Nau 1996;
Höller et al. 2014; Höller et al. 2016). To solve HTN plan-
ning problems, fast and domain-independent planning sys-
tems are required that are informed about both – hierarchy
and state. But as of now, the research in this area lacks be-
hind that in classical planning. Most current HTN planners
are based on heuristic search, as in classical planning. In
classical planning, SAT-based planning has also proven to
be highly efficient and has advantages compared to planning
via heuristic search. Most notably, SAT-based planners ben-
efit from future progress in SAT research without the need to

adapt the planner – simply replacing the solver is sufficient.
Also propositional encodings are easily extendable, e.g., to
add further constraints, like goals formulated in LTL. Lastly
propositional logic seems to be a suitable means to solve
HTN planning problems, as verifying solutions was shown
to be NP-complete (Behnke, Höller, and Biundo 2015).

In HTN planning, there has been little research on SAT-
based techniques. Most importantly, there is no SAT-based
HTN planner capable of handling all HTN planning prob-
lems. There are only two restricted encodings, one by Mali
and Kambhampati (1998) – which (among other restrictions)
cannot handle recursion, and one by Behnke, Höller, and Bi-
undo (2018) – which cannot handle partial order in methods,
but can handle recursion. Both restrictions limit the expres-
siveness of HTN planning severely (Höller et al. 2014; Erol,
Hendler, and Nau 1996) and limit the domain-modeller’s
freedom unnecessarily. We present the first encoding that
can handle all propositional HTN planning problems.

We will show how the encoding of Behnke, Höller, and
Biundo (2018) can be adapted such that it can also be applied
to partially ordered domains. Since in that case, any order-
ing information in the encoding is lost, we propose a mech-
anism for representing the ordering constraints contained in
the domain by additional decision variables. Since the order
between two primitive tasks can only originate from a single
method, this encoding is fairly compact.

Our empirical evaluation compares our encoding against
state-of-the-art HTN planners. Here, we have considered
combinatorial HTN planning problems, and not those where
the HTN is hand-coded to help the planner find a solution.
Our SAT-planner outperforms existing HTN planning tech-
niques on these domains, some of them significantly.

First we introduce HTN planning formally and discuss re-
lated work. Then, we review the concept of totally-ordered
Path Decomposition Trees and the SAT formula based on
them. In section five, we introduce the concept of partially-
ordered Path Decomposition Trees and present our SAT for-
mula that can be used for planning in such domains. In the
following chapter we describe the evaluation we conducted.

Preliminaries
We use the HTN formalism of Geier and Bercher (2011),
where plans (partially ordered sets of task) sare represented
by task networks.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

40

Definition 1 (Task Network). A task network tn over a set
of task names X is a tuple (T,≺, α), where
• T is a finite, possibly empty, set of tasks
• ≺ ⊆ T × T is a strict partial order on T
• α : T → X labels every task with a task name
TNX denotes the set of all task networks over the task

names X . We write T (tn) = T , ≺ (tn)=≺ and α(tn)=α
for a task network tn = (T,≺, α). Two task networks
tn = (T,≺, α) and tn′ = (T ′,≺′, α′) are isomorphic,
written tn ∼= tn′, iff a bijection σ : T → T ′ exists, s.t.
∀t, t′ ∈ T it holds that (t, t′) ∈≺ iff (σ(t), σ(t′)) ∈≺′ and
α(t) = α′(σ(t)). Next we define the restriction notation.
Definition 2 (Restriction). Let R ⊆ D × D be a relation,
f : D → V a function and tn be a task network. Then:

R|X = R ∩ (X ×X) f |X = f ∩ (X × V)

tn|X = (T (tn) ∩X,≺(tn)|X , α(tn)|X)

An HTN planning problem is defined as follows.
Definition 3 (Planning Problem). A planning problem is a
6-tuple P = (L,C,O, γ,M, cI , sI), with
• L, a finite set of proposition symbols
• C, a finite set of compound task names
• O, a finite set of primitive task names with C ∩O = ∅
• γ : O → 2L × 2L × 2L, defining the preconditions and

effects of each primitive task
• M ⊆ C×TNC∪O, a finite set of decomposition methods
• cI ∈ C, the initial task name
• sI ∈ 2L, the initial state
The state transition semantics of primitive task names
o ∈ O is that of classical planning, given in terms
of an precondition-, an add-, and a delete-list: γ(o) =
(prec(o), add(o), del(o)). A primitive task is applicable in
a state s ⊆ L iff prec(o) ⊆ s and its application results
in the state δ(s, o) = (s \ del(o)) ∪ add(o). A sequence of
primitive tasks o1, . . . , om is applicable in a state s0 iff there
exist states s1, . . . , sn, each oi is applicable in si−1, and
δ(si−1, oi) = si. We defineM(c) = {(c, tn) | (c, tn) ∈M}
to be the methods applicable to c.

To obtain a solution in HTN planning, one starts with the
initial compound task and repeatedly applies decomposition
methods to compound tasks until all tasks in the current task
network are primitive.
Definition 4 (Decomposition). A method m = (c, tnm) ∈
M decomposes a task network tn1 = (T1,≺1, α1)
into a task network tn2 by replacing the task t, written
tn1 −−→t,m tn2, if and only if t ∈ T1, α1(t) = c, and
∃tn′ = (T ′,≺′, α′) with tn′ ∼= tnm and T ′∩T1 = ∅, where

tn2 = (T ′′,≺1 ∪ ≺′ ∪ ≺X , α1 ∪ α′)|T ′′ with

T ′′ = (T1 \ {t}) ∪ T ′

≺X = {(t1, t2) ∈ T1 × T ′ with (t1, t) ∈≺1} ∪
{(t1, t2) ∈ T ′ × T1 with (t, t2) ∈≺1}

We write tn1 →∗D tn2, if tn1 can be decomposed into tn2
using an arbitrary number of decompositions.

Using the previous definition we can describe the set of
solutions to a planning problem P .

Definition 5 (Solution). A task network tnS is a solution to
a planning problem P , if and only if

(1) there is a linearisation t1, . . . , tn of T (tnS) according
to ≺(tnS),

(2) α(tnS)(t1), . . . , α(tnS)(tn) is executable in sI , and
(3) ({1}, ∅, {(1, cI)})→∗D tnS ,

S(P) denotes the sets of all solutions of P , respectively.

Note that this definition of HTN planning problems ex-
cludes some of the features in the original formulation
by Erol, Hendler, and Nau 1996. His formalisation allows
for constraints to be present in task network, namely be-
fore, after, and between constraints. The constraint type
used most often, are before constraints, which correspond
to SHOP(2)’s method preconditions. Our planner can han-
dle them by compiling them into additional actions, as does
SHOP2. So far, we don’t support other constraint types.

To show that a task sequence π is a solution to a plan-
ning problem, we use Decomposition Trees (DTs) as wit-
nesses (Geier and Bercher 2011). They describe how π can
be obtained from the initial abstract task via decomposition.

Definition 6. Let P = (L,C,O,M, cI , sI) be an HTN
planning problem. A valid decomposition tree T is a 5-tuple
T = (V,E,≺, α, β), where

1. (V,E) is a directed tree with a root-node r.
2. ≺⊆ V × V is a strict partial order on V and is inherited

along the tree, i.e., if a ≺ b, then a′ ≺ b and a ≺ b′ for
any children a′ of a and b′ of b.

3. α : V → C ∪O assigns each inner node an abstract task
and each leaf a primitive task.

4. β : V →M assigns each inner node a method.
5. α(r) = cI
6. for all inner nodes v ∈ V with β(v) = (c, tn) and

children ch(v) = {c1, . . . , cn}, it holds that c = α(v).
Further, a bijection φ : ch(v) → T (tn) must exist
with α(ci) = α(tn)(φ(ci)) for all ci, and ci ≺ cj iff
φ(ci)≺(tn)φ(cj).

≺ may not contain orderings apart those induced by 2. or 6.
The yield yield(T) of T is the task network induced by the
leafs of T , i.e. V , α, and ≺ restricted to these leafs.

Geier and Bercher (2011) showed the following theorem:

Theorem 1. Given a planning problem P , then for every
task sequence π the following holds:
There exists a valid decomposition tree T s.t. π is a lineari-
sation of yield(T) if and only if π ∈ S(P).

This means, that instead of finding a solution to the plan-
ning problem P , we can equivalently try to find a DT whose
yield is executable – the approach we use in this paper.

Related Work
Past research has already investigated possible translations
of HTN planning problems into logic.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

41

HTNs and Logic
Notably, Mali and Kambhampati (1998) proposed a SAT-
translation for HTNs. Their HTN formalism differs signif-
icantly from the established HTN formalism, making their
encoding simpler and different from ours. They allow insert-
ing tasks into task networks apart from decomposition and
do not specify an initial task. Furthermore their encoding
is also restricted to non-recursive domains. Such domains
can be translated into an equivalent STRIPS planning prob-
lem, which is not the case for general domains (Höller et
al. 2014). Dix, Kuter, and Nau (2003) have proposed an
encoding of totally-ordered HTN planning into answer set
programming, mimicking the search of SHOP. Their evalua-
tion shows that the translated domain performs significantly
worse than the SHOP algorithm (up to a factor of 1.000).

PDT-based encoding
Since our work is based on the encoding presented by
Behnke, Höller, and Biundo (2018), we start by reviewing
this encoding in detail. Their idea was to restrict the maxi-
mum depth of decomposition. The planner start with some
small bound K and constructs a SAT formula satisfiable if
a solution with depth ≤ K exists. If not, K is increased
and the process is repeated. To construct this formula, they
used a compact representation of all possible decomposi-
tions with depth ≤ K – the Path Decomposition Tree PDT
P . A satisfying valuation of the SAT formula then repre-
sents a decomposition tree T that is a subgraph of P . They
however studied PDTs and the resulting formula only in the
context of totally-ordered HTN planning, which is as we
have argued in the introduction far less expressive and versa-
tile than full partially-ordered HTN planning. Also we want
to note, that almost all current HTN planning systems are
constructed for partially-ordered domains, as most domains
used in practice are partially ordered.

A PDT is a compact representation of all possible de-
compositions of the initial abstract task up to a given depth-
bound K. Every such decomposition is represented by a de-
composition tree (see Def. 6). The PDT is then a graph P
such that it contains every possible decomposition tree as
one of its subgraphs P ′. To ensure a “common structure” we
also require that the root of P ′ is the root of P . Next we give
the formal definition of totally-ordered Path Decomposition
Trees. To ease notation, we denote with L(T = (V,W)) the
set of all leafs of a tree T .
Definition 7. Let P = (L,C,O,M, cI , sI) be a planning
problem and K a height bound. A Path Decomposition Tree
PK of height K is a triple PK = (V,E, α) where
1. V are the nodes of a tree of height≤ K, with edges given

by function E : V → V ∗, and which has the root node r.
2. α : V → 2C∪O assigns each node a set of possible tasks.
3. cI ∈ α(r)
4. for all inner nodes v ∈ V , for each abstract task
c ∈ α(v) ∩ C that can be assigned to that node, and
for each method (c, tn) ∈ M(c), there exists a sub-
sequence v1, . . . , v|T (tn)| of the children E(v), such that
tni ∈ α(vi) for all i ∈ {1, . . . , |T (tn)|}, where tni is the
ith element of the sequence of task names of tn.

t1

t2 p1 p2

p1p3 p4

Figure 1: An example PDT, a DT as its subgraph (nodes
filled), and the extension for primitive tasks (dashed line).
The nodes of the DT are each annotated with the task (ti for
abstract and pi for primitives ones) that they are be labelled
with in the DT. The node labelled p2 does not have children
even though it is not at the “lowest” level due to the fact that
it can only be labelled with primitive tasks (p2 in our ex-
ample), while the node labelled with p1 can potentially also
be labelled with an abstract task. For this consider e.g. the
methods t1 7→ t2, p1, p2 and t1 7→ t2, t3, p2. Note that there
is one non-filled node that is also labelled with a task. This is
an encoding trick to ensure that the leafs of the DT are also
leafs of the PDT – primitive tasks are simply “inherited” by
one of their children in the PDT.

5. ∀v ∈ L(V,E) : either α(v) ⊆ O or the height of v is K.

This definition assumes that the tasks in a method’s task
network are totally-ordered and thus can be projected di-
rectly to a totally-ordered sequence of children. As a re-
sult, the leafs of the PDT are also totally-ordered (according
to the order implied by their common ancestors). Behnke,
Höller, and Biundo (2018) provide an algorithm construct-
ing a PDT PσK given a so-called child-arrangement function
σ. Based on it, they describe a SAT-formula FD(P,K) that
is satisfiable if and only if there exists a subgraph G′ of the
PDT PσK that forms a valid decomposition tree. A satisficing
valuation ofFD(P,K) represents such a DTG′ – expressed
by two types decision variables:

• tv – v is part of G′ and is labelled with t, i.e., α(v) = t.

• mv – the method m was applied to the node v of G′, i.e.,
β(v) = m

Their encoding propagates primitive tasks occurring at any
node v downwards through the first child of v in the PDT.
This ensured that yield(G′) is represented by the leafs ofPσK
that have a task assigned to them – else inner nodes of PσK
may belong to the yield. In addition to FD(P,K), Behnke,
Höller, and Biundo used a second formula FE(P,K) en-
suring executability of the tasks assigned to the leafs of G′.

For the formulaFD(P,K) – and for other formulae there-
after, we use the functor M(V), which given a set of de-
cision variables V , outputs a formula that is satisfiable if
and only if at most one of them (Sinz 2005). FD(P,K)
consist solely of local constraint, i.e., one sub-formula is
generated per node of the PDT. The formula to be gener-
ated for a node v of the PDT PσK = (V,E, α) is either
M({tv | t ∈ α(v) ∩ O}) ∧c∈C ¬cv if v ∈ L(PσK), i.e.,

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

42

if v is a leaf, or else the following formula:

f(v) = M({tv | t ∈ α(v)}) ∧ selectMethod(v)

∧ applyMethod(v) ∧ inheritPrimitive(v)

∧ nonePresent(v)

It first asserts that every node in the decomposition tree
can be labelled with at most one task. The next four sub-
formulae encode the further restrictions a decomposition
tree must fulfil. selectMethod ensures that an applicable
method is chosen and that only one is chosen, provided v
is labelled with an abstract task.

selectedMethod(v) = M({mv |M(α(v) ∩ C)})∧
 ∧

t∈α(v)∩C

tv →

∨

m∈M(t)

mv

 ∧

 ∧

m∈M(α(t)∩C)

(mv → tv)

applyMethod forces that whenever a method is selected, the
tasks in its task network are assigned to the children of v.
Let for a method m = (c, tn) be v1, . . . , v|T (tn)| the subse-
quence given in Def. 6. Let further denote ttn,i the ith task
of the (totally-ordered) task network tn.

applyMethod(v) =
∧

m=(t,tn)∈M(α(v))

[
mv →

|tn|∧

i=1

tvitn,i ∧
∧

vi∈E(v)\{v1,...,v|tn|}

∧

t∗∈C∪O
¬t∗vi

]

These clauses also propagate the total order between the sub-
tasks v1, . . . , v|tn|. inheritPrimitive and nonePresent take
care of the border cases, where v is either assigned a primi-
tive task, or none at all. Let here be v1 the first node inE(v).

inheritPrimitive(v) =

∧

p∈α(v)∩O

[
pv →

pv1 ∧

∧

vi∈E(v)\{v1}

∧

k∈C∪O
¬kvi

]

nonePresent(v) =

 ∧

t∈α(v)
¬tv

→

 ∧

vi∈E(v)

∧

t∈C∪O
¬tvi

The full decomposition formula FD(P) is then simply∧
v∈V f(v).

Partially-Ordered Decomposition
We can extend this encoding, allowing us to track the partial
order induced by the methods. As a first step, we have to ig-
nore the fact that the PDT represents any ordering constraint.
For that purpose, we introduce unordered PDTs, which dif-
fer only slightly from PDTs. Unordered PDTs – as their
names suggests – don’t have an ordering on the children
of a node. Based on this, the main difference lies in 4. of
the definition. For PDTs every node and applicable method,
the subtasks of that method must from a subsequence of the
nodes children, while for an unordered PDT it suffices that
they are a subset.

Definition 8. Let P = (L,C,O,M, cI , sI) be a planning
problem and K a height bound. An unordered PDT PK of
height K is a triple PK = (V,E, α) where

1. (V,E) is a tree of height ≤ K with the root node r.
2. α : V → 2C∪O assigns each node a set of possible tasks.
3. cI ∈ α(r)
4. for all inner nodes v ∈ V , for each abstract task
c ∈ α(v) ∩ C that can be assigned to v, and for each
method (c, tn) ∈ M(c), there exists a subset D =
{v1, . . . , v|T (tn)|} of v’s children, such that a bijection
φv(c,tn) : D → T (tn) exists with α(tn)(φv(c,tn)(d)) ∈
α(d) for all d ∈ D

5. ∀v ∈ L(V,E) : either α(v) ⊆ O or the height of v is K.

As uPDTs are a structural relaxation of PDTs, we can use
the same generation procedure based on a child-arrangement
function σ – simply by ignoring that methods are partially
ordered – we use some topological ordering of the methods
for generating PσK instead. Based on the generated uPDT, we
can also use the same formulaFD(P,K) describing decom-
position. To capture the partial order we add new decision
variables for bookkeeping:
• bvw – for nodes v and w that have the same parent, i.e., are

siblings. If bvw is true, the order v ≺ w is contained in the
method applied to the parent of v and w.

These variables are sufficient to infer the order between all
elements of yield(G′). This is due to how order is inherited
in a decomposition tree. Essentially, the order between two
nodes v and v′ can only stem from the method applied to
their last common ancestor in G′. The structure is illustrated
in Figure 2. For two leafs v and v′ of the tree, let A(v, v′)
be the last common ancestor of v and v′. Further be C(a, v),
be the child c of a, s.t. the leaf v is below c. Then v stems
from C(A(v, v′), v), while v′ from C(A(v, v′), v′). Then the
formal property is the following:
Theorem 2. Let T = (V,E,≺, α, β) be a decomposition
tree. Let v, v′ ∈ L(V,E) be two leafs of T , c = A(v, v′)
be the last common ancestor of v and v′. Then the order
between v and v′ is the same as between vc = C(c, v) and
v′c = C(c, v′) induced by the method applied to c.

Proof. Suppose there is an order between vc and v′c. Then
by 2. of Def. 6, this order must also be present between v
and v′.
Suppose there is no order between vc and v′c. Then the direct
children of vc and v′c that are ancestors of v and v′ respec-
tively cannot contain any order, too. By definition, any order
between them must either be introduced by methods or by
2. of Def. 6. Clearly, no decomposition methods could have
introduced the ordering since the tasks don’t have a common
parent. Also since vc and v′c have no order between them 2.
of Def. 6 is not applicable. By induction, we can conclude
that there is not order between v and v′.

To keep track of the ordering constraints, we have to add
for every decision variable mv clauses that enforce that the
correct bvw variables are set true. We therefore add for every
mv the following clauses to FD(P,K), where m = (c, tn),

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

43

Figure 2: An illustration where order originates from in a
decomposition tree.

v1
α(v1)=p2

v2
α(v2)=p6

v3
−

. . . vn
α(vn)=p3

p1
−

p2
p2

p3
p6

. . . pn
p3

Figure 3: Matching structure between leafs of PσK , and positions
in the primitive sequence.

{v1, . . . , vn} are the nodes of PσK to which the tasks of tn
are mapped, and {t1, . . . , tn} be those tasks.

n∧

i=1

∧

j∈{1,...,n} s.t. (ti,tj)∈≺(tn)
(mv → bvivj)

These clauses enforce that the bvws represent a superset of
the ordering constraints induced by the applied methods.

To complete the encoding we need a formula FE(P,K)
that is satisfiable if and only if yield(G′) is executable. Let
l = |L(PσK)| be the number of leafs of PσK . We separate
this formula into two parts: representing a linearisation of
yield(G′) and checking that this linearisation is executable.
A linearisation of yield(G′) is a mapping of the leafs of G′
to a sequence of positions. We can use l as an upper bound
to the number of positions – and we have always used this
value in our encoding. Also we denote these positions as
1, . . . , l. This mapping is essentially a bipartite matching
that must not contradict the ordering constraints. Figure 3
illustrates these structures.

We have to generate a SAT formula that represents such a
matching and is only satisfiable iff the matching is valid (i.e.
an actual matching and it respects the order). We omit a for-
mal proof of correctness, as we deem the encoding straight-
forward enough to be considered correct by construction.
We introduce two new decision variables:

• cvi – leaf v connected with position i

• av – leaf v contains a task (i.e. is a leaf of G′ and has to
be matched)

Based on these variables, we can formulate the restrictions a
valid matching must fulfil. First, every leaf or position may
be matched only once.

F1 =
l∧

i=1

M({cvi | v ∈ L(PσK)}) ∧
∧

v∈L(PσK)

M({cvi | 1 ≤ i ≤ l})

Next, we define the av atoms, that are true exactly if the leaf
v of PσK contains an action. We use them as intermediate

variables to decrease the overall size of the formula.

F2 =
∧

v∈L(PσK)

¬av →

∧

o∈α(v)
¬ov

 ∧

av →

∨

o∈α(v)
ov

Next, a leaf of PσK that contains a task has to be matched –
else it would be allowed to disregard it when checking the
executability of yield(G′).

F3 =
∧

v∈L(PσK)

¬av →

∧

1≤i≤l
¬cvi

 ∧

av →

∨

1≤i≤l
cvi

If all these formulae are fulfilled, the atoms cvi represent a
matching between all leafs ofG′ and the positions. As a next
step, we have to ensure that this matching does not violate
any ordering constraint induced by the chosen decomposi-
tion methods. To do that, we have to exclude the possibility
that there are two positions i < i′ where the tasks they are
matched with must occur in the opposite order. F4 forbids
the mentioned situation.

F4 =
l∧

i=1

l∧

i′=i+1

∧

v,v′∈L(PσK)

(
(cvi ∧ cv

′
i′)→ ¬bC(A(v,v′),v′)

C(A(v,v′),v)

)

The second constraint states that the chosen linearisation
of the tasks at the leafs of G′ must be executable in the
initial state. To express executability, we use the encoding
proposed by Kautz and Selman (1996). For every proposi-
tion symbol p ∈ L, we introduce a decision variable pi for
0 ≤ i ≤ L. pi is true if p is true after executing the ith action.
Further, we introduce decision variables ti for every primi-
tive task t ∈ O, stating that t is executed at timestep i. Then
the formula FLE is defined as follows:

FLE =
∧

p∈sI
p0 ∧

∧

p∈L\sI
¬p0 ∧

l−1∧

i=0

(FA(i) ∧ FM (i))∧

l∧

i=1

M({ti | t ∈ O})

FA(i) =
∧

t∈O
ti+1 →

 ∧

p∈prec(t)
pi ∧

∧

p∈add(t)
pi+1 ∧

∧

p∈del(t)
¬pi+1

FM (i) =
∧

p∈L

(¬pi ∧ pi+1)→

∨

t∈O with p∈add(t)
ti+1

So far, we have only checked that the matching is valid and
that the sequence of actions assigned to the positions is ex-
ecutable, but not that the matching influences the tasks as-
signed to positions. I.e., we have to add two more formulae
that express that if a position it not matched to any leaf, then
it also cannot contain a task, and that if it is matched it has

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

44

to contain exactly the same task as the leaf does.

F5 =
∧

1≤i≤l

 ∧

v∈L(PK)

¬cvi

→

(∧

t∈O
¬ti
)

F6 =
∧

v∈L(PK)

∧

t∈α(v)

∧

1≤i≤l
tv ∧ cvi → ti

To sum up, the full formula expressing executability is:

FE(P,K) = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6 ∧ FLE
We know that the satisfying valuations of FD(P,K) rep-
resent exactly all decomposition trees of P with an height
≤ K (Behnke, Höller, and Biundo 2018). Based on this, the
correctness and completeness of our encoding can be shown.
Theorem 3. FE(P,K)∧FD(P,K) is satisfiable iff P has
a solution with decomposition height ≤ K.

Proof. ⇒: Let ν be a satisfying valuation of FE(P,K) ∧
FD(P,K). Then ν represents a decomposition tree, since
FD(P,K) is satisfied (Behnke, Höller, and Biundo 2018).
Thus the tasks assigned to the leafs of the Path Decompo-
sition Tree encoded by FD(P,K) from the yield Y of a
Decomposition Tree. Also the sequence of actions S repre-
sented by the ti is executable, due to FLE . What remains to
show, is that this sequence is a linearisation of the yield Y .
Due to F1 ∧ F2 ∧ F3 the cvi represent a matching of Y to S
and due to F5 ∧ F6 matched elements of Y and S contain
the same task. Lastly, due to Theorem 2, the order between
two tasks in Y depends solely on the method applied to their
last common ancestor. Due to the clauses introducing the bvw
variables, at least those orderings induced by the decomposi-
tion tree are true. Allowing for more order is not a problem,
since ν already represents a linearisation. Lastly, F4 ensures
that the order encoded by the bvw is respected.
⇐: Let T = (V,E,≺, α, β) be a decomposition tree

whose yield is executable. Then a valuation ν exists that
satisfies FD(P,K) (Behnke, Höller, and Biundo 2018)
and represents T . Let v1, . . . , vn be the leafs of the PDT
who have a task assigned to them in ν. Let further be
i1, . . . , in the indices of these tasks in the executable lin-
earisation of the yield of T . We then set cvjij true for all
j ∈ {1, . . . , n}. We also set the α(vj)ij and the appropri-
ate pi true. Also we set bvw true as appropriate, which can-
not violate the clauses of F4, as the respective order must
also be present in the yield of T . This valuation satisfies
FE(P,K) ∧ FD(P,K).

Evaluation
We have conducted an empirical evaluation of our planner
to show that it performs favourably compared to other HTN
planning systems. The code of our planner is available at
www.uni-ulm.de/in/ki/panda/. Since most plan-
ning problems are given lifted, we use a combination of the
planning graph and task decomposition graphs (Bercher et
al. 2017) to ground them.

Domains. Our benchmarking set is composed of the fol-
lowing domains (will be released upon acceptance):

Domain |L| |O| |C| |M|
min max min max min max min max

PCP 6 9 8 14 4 46 10 34
ENTERTAINMENT 10 146 16 455 10 170 20 541
UM-TRANSLOG 9 25 7 22 2 27 2 28
SATELLITE 6 37 7 123 3 25 10 214
WOODWORKING 10 101 7 739 4 443 9 2002
SMARTPHONE 10 103 8 231 3 66 4 360
ROVER 21 511 73 4257 14 285 49 3279
TRANSPORT 11 364 13 1968 11 802 21 3158

Domain |L(PK)| K #clause #plansteps
min max min max min max min max

PCP 12 70 4 9 14.012 12.091.312 10 42
ENTERTAINMENT 8 78 4 6 416 42.028 7 42
UM-TRANSLOG 7 40 3 4 218 281.642 7 26
SATELLITE 5 40 3 5 183 1.375.308 5 20
WOODWORKING 3 25 3 7 531 689.552 3 19
SMARTPHONE 7 78 3 5 3.332 18.878.346 5 77
ROVER 53 61 5 5 4.048.432 7.045.922 27 36
TRANSPORT 8 48 4 6 3.980 5.176.067 8 42

• UM-TRANSLOG, WOODWORKING, SATELLITE, and
SMARTPHONE are the benchmark domains of Bercher,
Keen, and Biundo (2014).

• ENTERTAINMENT describes setting-up HiFi devices.

• ROVER is the domain used by Höller et al. (2018). It
is based on the problem instances of the IPC3 domain
ROVER combined with an HTN-structure similar to the
one developed for SHOP.

• TRANSPORT describes a deliver-with-trucks scenario.
There are several trucks (which do not need fuel) to de-
liver packages from their start location to a destination.

• PCP is an encoding of Post’s Correspondence Problem.
Since HTN planning is undecidable, we felt it proper to
show that an HTN planner is able to solve undecidable
problems (like PCP) when encoded in an HTN domain.

Behnke, Höller, and Biundo (2018) used the same domains
except PCP in their evaluation. They, however, had to alter
most of them, since these domains are naturally partially-
ordered. In order for a totally-ordered HTN planner to be
able to handle these benchmark domains, Behnke, Höller,
and Biundo (2018) have manually added additional ordering
constraints to each partially-ordered method. Adding order-
ing constraints to HTN domains can make them unsolvable
(see e.g. PCP, which cannot contain a solution when totally
ordered). The additional orderings were chosen such that at
least one solution was retained. We also want to note that
adding these orderings makes some of the domains much
easier to solve. For example, in transport, interleaving us-
ing the partial order is required to find optimal solutions. If
the domain is totally-ordered, one package has to be deliv-
ered before another package could be picked up. The do-
mains ENTERTAINMENT, ROVER, and TRANSPORT contain
method preconditions, which we compile away into addi-
tional actions preceeding all other actions.

Planners. Each planner was given 10 minutes runtime
and 4 GB RAM per instance on an Intel Xeon E5-2660. We
have compared all state-of-the-art HTN planning systems:
• SHOP2 (Nau et al. 2003) and PANDA’s version of

SHOP2,
• FAPE (Dvorak et al. 2014),
• UMCP (Erol, Hendler, and Nau 1994),

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

45

1 2 5 10 20 50 100 500

0
20

40
60

80
10

0
12

0
14

0

time in sec

so
lv

ed
 in

st
an

ce
s

SAT cms
SAT Maple
SAT Riss6
PANDApro FF
HTN2STRIPS jasper
HTN2STRIPS MpC
SHOP2 − PANDA
SHOP2

TDG−m
TDG−c
UMCP−BF
UMCP−DF
UMCP−H
FAPE
totSAT

Figure 4: Runtime vs number of solved instances per planner

• PANDA with the TDGm and TDGc heuristics (Bercher
et al. 2017) using greedy A*,

• PANDApro using the FF heuristic (Höller et al. 2018),
• HTN2STRIPS (Alford et al. 2016), and
• totSAT (Behnke, Höller, and Biundo 2018).
FAPE – according to the description in its paper – does
not support recursive domains. Thus, we ran it only on the
domains SATELLITE, WOODWORKING, and ROVER, which
are the non-recursive ones in our evaluation. Similarly, as
totSAT can only handle totally-ordered instance, we have
run it only on those instances from our benchmark set that
are totally ordered. Lastly, we have tested HTN2STRIPS
with two different classical planners. We have used both
jasper (which was originally used by Alford et al. (2016))
as well as Madagascar (Rintanen 2014), the currently best
known SAT planner. We chose to do so, to compare our
propositional encoding with the theoretically only so-far
known propositional encoding for partially-ordered HTNs:
first using the HTN2STRIPS translation and then the ∃-step
encoding (Rintanen, Heljanko, and Niemelä 2006) for the
resulting planning problem.

For our planner, we have evaluated three SAT solvers,
each a top performers at the SAT Competition 2016. These
were: cryptominisat5 (Soos 2016), MapleCOMSPS (Liang
et al. 2016), and Riss6 (Manthey, Stephan, and Werner
2016). As our planner performs the translation using a bound
K, we usually have to try several values for K. We started
with K = 1 and increased by 1 if the formula was unsolv-
able. This iterative procedure allows us to handle any recur-
sion in the domains, as we gradually unroll it.

Results. In Tab. 1 we show the number of solved instances
per planner within the given time and memory limits. Fig. 4
shows the solved instances depending on runtime. First, our
SAT-encoding, no matter the solver, solves more instances
than any other planner. Second, our planner is on par in ev-
ery domain with the best solver for that domain, or solves
significantly more instances than other planners.

#i
ns

ta
nc

es

SA
T

cm
s

SA
T

M
ap

le

SA
T

R
is

s6

PA
N

D
A

pr
o

FF

H
T

N
2S

T
R

IP
S

ja
sp

er

H
T

N
2S

T
R

IP
S

M
pC

SH
O

P2
-P

A
N

D
A

SH
O

P2

T
D

G
-m

T
D

G
-c

U
M

C
P-

B
F

U
M

C
P-

D
F

U
M

C
P-

H

FA
PE

to
tS

A
T

[A
A

A
I1

8]

PCP 17 11 11 10 10 3 3 10 0 9 8 0 0 0 - -
ENTERTAINMENT 12 12 12 12 11 5 4 9 5 9 9 5 5 6 - 12 / 12
UM-TRANSLOG 22 22 22 22 22 19 7 22 22 22 22 22 22 22 - 19 / 19
SATELLITE 25 25 24 23 25 23 8 19 22 25 21 18 20 23 22 5 / 5
WOODWORKING 11 11 11 11 10 5 4 6 8 8 10 6 6 6 0 -
SMARTPHONE 7 7 6 6 5 6 5 5 4 5 5 4 4 4 - -
ROVER 20 4 4 4 3 5 4 3 3 2 2 0 0 0 3 -
TRANSPORT 30 16 14 13 13 19 3 1 0 1 1 1 0 0 - -
total 144 108 104 101 99 85 38 75 64 81 78 56 57 61 25 36

Table 1: Number of solved instances per planner per domain.
Maxima are indicated in bold. cms = cryptominisat5

We want to point out our performance in the domains
TRANSPORT and PCP. In TRANSPORT we only solve 3 in-
stances less than HTN2STRIPS, while all other planners
solve at most a single instance. In PCP, we solve signifi-
cantly more instances than HTN2STRIPS. This is notable,
as both domains contain difficult combinatorially problem.
This is especially notable, since HTN2STRIPS internally
uses a state-of-the-art classical planner (jasper, (Xie, Müller,
and Holte 2014)). However, there still seems to be room for
improvement, as no planner seem to be well equipped to ex-
ploit the hierarchy in the ROVER domain.

The original totSAT for totally ordered domains has poor
coverage, based on the fact that most domains of the bench-
mark set are partially-ordered. Lastly, we can observer that
using Madagascar in conjunction with the HTN2STRIPS en-
coding seems to perform extremely poorly. In most instances
Madagascar is aborted after only a few seconds as it reached
the memory limit. This is probably due to the large number
of groundings for the operators in the HTN2STRIPS encod-
ing representing methods, which is a known problem of the
encoding. We have re-run Madagascar with a memory limit
of 20 GB instead of 4 GB and have only seen an increase
by 4 solved instances. Also, the per-instance runtime when
compared to jasper is fairly poor. We suppose that this is due
to the way the encoding works. Modern SAT-based planning
draws its efficiency mainly from the ability to execute sev-
eral operators in parallel. This is not possible in the encoded
domain as the next-predicates ensure that all simultaneously
applicable actions form a clique in the disabling graph, i.e.,
cannot be executed parallel in the propositional encoding.

Conclusion
We have presented the first encoding for SAT-based HTN
planning that can solve all propositional HTN planning
problems. To that end, we have utilised a previous encod-
ing that was only usable for totally-ordered planning, which
restricts the freedom of the domain modeller unnecessarily,
and extended it to partial order. Lastly, we have shown that
our new planner outperforms state-of-the-art HTN planners.
This planner has already been used in practice, namely in an
assistant teaching users how to use electronic tools in Do-It-
Yourself projects (Behnke et al. 2018).

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

46

Acknowledgments
This work was partly done within the technology trans-
fer project “Do it yourself, but not alone: Companion-
Technology for DIY support” of the SFB/TRR 62 funded
by the German Research Foundation (DFG).

References
Alford, R.; Behnke, G.; Höller, D.; Bercher, P.; Biundo, S.;
and Aha, D. W. 2016. Bound to plan: Exploiting classical
heuristics via automatic translations of tail-recursive HTN
problems. In Proc. of the 26th Int. Conf. on Autom. Plan.
and Sched., (ICAPS 2016), 20–28. AAAI Press.
Behnke, G.; Schiller, M.; Kraus, M.; Bercher, P.; Schmautz,
M.; Dorna, M.; Minker, W.; Glimm, B.; and Biundo, S.
2018. Instructing novice users on how to use tools in DIY
projects. In Proc. of the 27th Int. Joint Conf. on AI and the
23rd Europ. Conf. on AI (IJCAI-ECAI 2018). AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the com-
plexity of HTN plan verification and its implications for plan
recognition. In Proc. of the 25th Int. Conf. on Autom. Plan.
and Sched. (ICAPS 2015), 25–33. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT –
Totally-ordered hierarchical planning through SAT. In Proc.
of the 32th AAAI Conf. on AI (AAAI 2018), 6110–6118.
AAAI Press.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017.
An admissible HTN planning heuristic. In Proc. of the 26th
Int. Joint Conf. on AI (IJCAI 2017), 480–488. AAAI Press.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid planning
heuristics based on task decomposition graphs. In Proc. of
the 7th Ann. Symp. on Combinatorial Search (SoCS 2014),
35–43. AAAI Press.
Champandard, A.; Verweij, T.; and Straatman, R. 2009. The
AI for Killzone 2’s multiplayer bots. In Proc. of the Game
Developers Conference 2009 (GDC 2009).
Dix, J.; Kuter, U.; and Nau, D. 2003. Planning in answer set
programming using ordered task decomposition. In Proc. of
the 26th Annual German Conf. on AI (KI 2003), 490–504.
Springer.
Dvorak, F.; Bit-Monnot, A.; Ingrand, F.; and Ghallab, M.
2014. A flexible ANML actor and planner in robotics. In
Proc. of the 4th Work. on Plan. and Rob. (PlanRob 2014),
12–19.
Erol, K.; Hendler, J.; and Nau, D. 1994. UMCP: A sound
and complete procedure for hierarchical task-network plan-
ning. In Proc. of the 2nd Int. Conf. on AI Plan. Systems
(AIPS), 249–254. AAAI Press.
Erol, K.; Hendler, J.; and Nau, D. 1996. Complexity results
for HTN planning. Annals of Mathematics and AI 18(1):69–
93.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proc. of the 22nd Int. Joint
Conf. on AI (IJCAI 2011), 1955–1961. AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.

In Proc. of the 21st Europ. Conf. on AI (ECAI 2014), volume
263, 447–452. IOS Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the expressivity of planning formalisms through
the comparison to formal languages. In Proc. of the 26th
Int. Conf. on Autom. Plan. and Sched., (ICAPS 2016), 158–
165. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, B. 2018. A
generic method to guide HTN progression search with clas-
sical heuristics. In Proc. of the 28th Int. Conf. on Autom.
Plan. and Sched. (ICAPS 2018). AAAI Press.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In Proc.
of the 13th Nat. Conf. on AI (AAAI 1996), 1194–1201.
Liang, J. H.; Oh, C.; Ganesh, V.; Czarnecki, K.; and Poupart,
P. 2016. MapleCOMSPS, MapleCOMSPS LRB, Maple-
COMSPS CHB. In Proc. of SAT Competition 2016. Univer-
sity of Helsinki.
Mali, A., and Kambhampati, S. 1998. Encoding HTN plan-
ning in propositional logic. In Proc. of the 4th Int. Conf. on
AI Plan. Systems (AIPS 2002), 190–198. AAAI.
Manthey, N.; Stephan, A.; and Werner, E. 2016. Riss 6
solver and derivatives. In Proc. of SAT Competition 2016.
University of Helsinki.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J.; Wu,
D.; and Yaman, F. 2003. SHOP2: an HTN planning system.
Journal of AI Research (JAIR) 20:379–404.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Wu, D.; Yaman,
F.; Muñoz-Avila, H.; and Murdock, J. 2005. Applications of
SHOP and SHOP2. Intelligent Systems, IEEE 20:34–41.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12-13):1031–1080.
Rintanen, J. 2014. Madagascar: Scalable planning with
SAT. In The 2014 International Planning Competition –
Description of Planners, 66–70.
Sinz, C. 2005. Towards an optimal CNF encoding of
boolean cardinality constraints. In Proc. of the 11th Int.
Conf. on Principles and Practice of Constraint Program-
ming (CP 2005), volume 3709, 827–831. Springer.
Soos, M. 2016. The CryptoMiniSat 5 set of solvers at SAT
Competition 2016. In Proc. of SAT Competition 2016. Uni-
versity of Helsinki.
Straatman, R.; Verweij, T.; Champandard, A.; Morcus, R.;
and Kleve, H. 2013. Game AI Pro: Collected Wisdom of
Game AI Professional. CRC Press. chapter Hierarchical AI
for Multiplayer Bots in Killzone 3.
Xie, F.; Müller, M.; and Holte, R. 2014. Jasper: The art
of exploration in greedy best first search. In The 8th Int.
Planning Competition, 39–42.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

47

XPlan: Experiment Planning for Synthetic Biology
Ugur Kuter† and Robert P. Goldman† and Daniel Bryce† and Jacob Beal‡

Matthew DeHaven† and Christopher S. Geib† and Alexander F. Plotnick† and Tramy Nguyen‡ and Nicholas Roehner‡
†SIFT, LLC

Minneapolis, MN, USA
{dbryce, rpgoldman, ukuter, mdehaven, aplotnick, cgeib}@sift.net

‡Raytheon BBN Technologies
Cambridge, MA, USA

jacob.beal@ieee.org, nicholas.roehner@raytheon.com, tramy.nguy@gmail.com ∗

Abstract
We describe preliminary work on XPlan, a system for exper-
iment planning in synthetic biology. In synthetic biology, as
in other emerging fields, scientific exploration and engineer-
ing design must be interleaved, because of uncertainty about
the underlyingmechanisms. Through its experiment planning,
XPlan provides a coordinating linchpin in DARPA’s Syner-
gistic Discovery and Design (SD2) platform to automate sci-
entific discovery, closing the loop between multiple machine
learning analysis and biological design tools and wet labs to
guide the discovery and design process. To accomplish this,
XPlan combines design of experiments techniques with hi-
erarchical planning, based on the Shop2 planner, to develop
experimental plans that are directly executable in highly auto-
matedwet labs and to project experimental costs. In particular,
XPlan formulates experimental designs and translates them
into goals representing biological samples, then uses Shop2
to plan construction and measurement of samples using avail-
able laboratory resources. In ongoing work, we are develop-
ing probability models that will support value of information
computations to optimize experimental plans.

1 Introduction
In the field of synthetic biology, as with other emerging
fields of engineering, scientific exploration and engineering
design are intimately entwined. Unlike established fields of
engineering, synthetic biology has only highly uncertain and
incompletemechanisticmodels. As a result, engineering syn-
thetic biological systems is an incremental process in which
the production of designs is closely interleaved with execu-
tion of experiments to assess the success of those designs and
data analysis to identify factors and mechanisms responsible
for design successes and failures.

Organization and planning of synthetic biology experi-
ments is currently done almost entirely by hand. Several
ongoing developments, however, are rapidly increasing the
need for automation assistance in experiment planning.More

∗This work was supported by the Air Force Research Laboratory
(AFRL) and DARPA under contract FA875017CO184. This docu-
ment does not contain technology or technical data controlled under
either U.S. International Traffic in Arms Regulation or U.S. Export
Administration Regulations. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the AFRL
and DARPA.

and more laboratory automation is becoming available, in-
creasing the scale and complexity of experiments that can
be performed. Automation and information technology are
supporting new business models with laboratory work done
by technicians or outsourced to a “lab for hire.” Finally, new
“multiplexing” protocols allow many tests to be conducted
on a single experimental sample, and multiple experimental
samples to be processed in parallel. In all of these cases, the
growth in scale and complexity are rapidly outstripping the
abilities of humans to create detailed experimental plans and
to hand-curate the relationships between those plans and the
large collections of data they generate. Furthermore, experi-
ments are still costly both in money and time, and the space
a researcher wishes to explore is often much larger than the
number of samples that can be tested, so there are oppor-
tunities for automation to assist in optimizing the value of
information from each sample, potentially even dynamically
based on partial results from an experiment in progress.

This paper explains how our XPlan planner, based on
Hierarchical Task Network (HTN) planning, addresses these
issues by providing automation support for experiment plan-
ning. In the next section, we describe the class of discovery
and design problems addressed by XPlan, and the chal-
lenges they pose. We then explain how our HTN approach,
based on the Shop2 planner, addresses these challenges, and
describe our early-stage work on optimizing the expected
value of information while planning experiments. Finally,
we summarize and describe some next steps.

2 Synergistic Discovery and Design (SD2)
Synthetic biology is the systematic engineering of living or-
ganisms to perform desired functions. For example, biolog-
ical sensors have applications in sensing biological, chemi-
cal, and radioactive weapons, and pathogens; effectors have
applications in chemical synthesis and cleanup, and targeted
medical therapies. Because existing models for genetic struc-
tures, assembly, and expression are still relatively weak, how-
ever, synthetic biology necessarily involves both design and
experimentation to assess the success of designs and identify
factors responsible for success and failure.

DARPA’s Synergistic Discovery and Design (SD2) pro-
gram seeks to speed scientific and design processes through
automated support for experiment planning, automated ex-
ecution of experimental protocols across laboratories, and

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

48

Decision-Theoretic Hierarchical Planner

Domain-
Agnostic

Experimental
Strategies

Automation-Assisted
Laboratory

Synthetic Biology
Engineer

Data Storage &
Analysis

Experiment Parameterization

Experimental Plan

Ex
pe

rim
en

t

Value of
Information

Alternative Parameterizations

Experiment Request

Strategies

Experimental Plan

Experiment ProjectionExperiment Initial
State

Possible Projected States State Clusters

Info Gain

Experimental
Data

Experiment
Request

Incomplete Models

XPlan

Processed Data,
Designs, Models

Figure 1: XPlan combines domain-agnostic strategies and domain-specific knowledge to expand experiment requests into executable plans,
which are then parameterized and projected for VOI analysis. Plans are given to laboratories to execute, producing data that results in updated
models and designs and new experiment requests.

high-speed, large-scale exploratory data analysis. Figure 1
shows the high-level architecture of XPlan, our hierarchical
experiment planning system,which is a key part of the overall
SD2 project. XPlan uses HTN planning to generate exper-
imental protocols from synthetic biologists’ expressions of
experimental intent. It also translates the protocols it gener-
ates into executable forms so that they can be performed at
different laboratories, which have different equipment, levels
of automation, and processes.

XPlan also helps with data analysis, by storing informa-
tion about the protocol in SynBioHub (McLaughlin et al.
2018; Madsen et al. 2016; Roehner et al. 2016), a standard
synthetic biology semantic database. This enables labs per-
forming protocols to accurately and consistently label the re-
sulting data, immensely simplifying the process of data anal-
ysis. It also enables the operation of an automated pipeline
for preliminary data formatting, labeling, and processing.

Experiment Planning for synthetic biology is challenging
for a number of reasons:
• Complex Systems and Incomplete Models: The causal
processes underlying biological mechanisms and their re-
sponse to external stimuli are complex and only partially
known. Designing biological circuits is difficult because
of constraints such as the interactions of elements of the
design with one another, and with existing biological func-
tions (e.g., the design takes resources the cell needs to live).
Therefore, decisions such as how long to incubate samples
(to allow cells to multiply and respond to their environ-
ment) are difficult to make. Such decisions are made based
upon the expertise of biologists without a formal causal
model that would support the simulation/projection nec-
essary for first-principles planning.

• Replication: Replicating experiments at multiple loca-
tions is critical in emerging fields. This follows from the
incomplete knowledge described above: since we are not
certain what environmental factors are most critical, and
must be most carefully controlled, replication can provide
even more information than in well-understood fields.

• Large Sample Sizes: Recent advances in biotechnology
have reduced experiment costs through increased paral-
lelization. In many cases, the cost of culturing hundreds of
samples is only marginally more than the cost of a single
sample. However, some operations such as sequencing the
genome of a sample are not parallelizable. This is a chal-
lenge for planners because they must reason about many
samples (objects). In some cases operations apply to all
samples and do not impact the plan search branching fac-
tor. In other cases, the planner must select between subsets
of samples for an operation, and hence cope with a large
branching factor.
The problemof planning experiments for synthetic biology

has several interesting features from a planning perspective:
• Long Planning Windows: Experiments often execute
over the course of multiple days, providing a long win-
dow between planning episodes. Each planning episode
involves selecting a new set of samples and conditions to
investigate based upon the outcome of previous experi-
ments. With several days to plan, it is possible to consider
many possible plans. This allows for a more costly anal-
ysis of alternatives and shifts the emphasis from finding
satisficing plans to finding high quality plans.

• Multiple Levels of Abstraction: Plan executors (labora-
tories) offer a range of robot and human executed primi-

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

49

tive actions. Each laboratory offers a layer of abstraction
over the actions that go into experimental protocols, and
those layers of abstraction vary between labs based on the
extent of automation, equipment available, and manage-
ment structure. This provides an interesting relationship
between choice of performer and nature of the procedure.
Also, by providing a common view on these differing in-
stitutions, XPlan can give real value to its users.

• Managing Costs and Benefits: Synthetic biology experi-
ments are expensive, and because different labs’ cost mod-
els are different, it can be difficult for biologists to predict
the costs of performing a particular protocol at a partic-
ular facility or set of facilities. XPlan incorporates mul-
tiple labs’ cost models into its HTNs to compute costs
along with protocols. To help with the benefit side of the
analysis, we are beginning to add value of information
computation and guidance to XPlan to help biologists get
the most useful information with their limited resources
(both monetary and human).

3 Experiment Planning
Experiment planning involves two sub-problems: (1) exper-
imental design, to select the samples and conditions to test,
and (2) plan synthesis, to create the procedures that will
construct and then measure the samples. In this paper, we fo-
cus on plan synthesis and describe our hierarchical planning
approach based on our Shop2 system (Goldman and Kuter
2018; Nau et al. 2003; 2005).

Shop2’s hierarchical planning approach is particularly
well-suited to planning synthetic biology experiments. HTNs
enable us to easily capture expert knowledge from biology
researchers and formalize that knowledge for use in plan-
ning. A specific advantage of Shop2 is that it is a forward
state progression planner: it performs task decompositions in
the order those tasks will be executed in the world, while pro-
gressing the current state. Because it does forward state space
planning,Shop2 always has a fullmodel of the current state of
the world (and the history that led to it). This full world state
enablesShop2 to incorporate considerably greater expressive
power – for example, capabilities for calling attached proce-
dures, making axiomatic inferences, and performing numeric
computations – than other HTN planners (e.g., UMCP (Erol,
Hendler, and Nau 1994) and Sipe (Wilkins 1988)), that work
with partial world models. Shop2 was developed this way
for work on designing for manufacturability, which involved
using CAD tools in projective planning. Such tools require
full state descriptions, and typically are incapable of regres-
sion. For example, one cannot look at a machined part and
reason to what was used to build it, but it’s straightforward
to give a blank and a design to a CAD tool to identify the re-
quired cuts and project the resulting part. Progression search
also potentially allows for easier incorporation of informed
heuristics, though at the moment the heuristics in XPlan are
incorporated in the HTN preconditions. It is an open research
question how to combine informed heuristics with such ex-
pressive preconditions, and with the task-based, as opposed
to goal-based, semantics of Shop2 plans.1

1See Goldman (2009), for a discussion of the semantics of

XPlan’s plan library is divided into three components,
broadly speaking. First is a high-level library of experimen-
tal strategies that is not specific to synthetic biology or to
particular laboratories. These strategies aim to distribute ex-
periments across laboratories for executionwhileminimizing
variation, validating hypotheses, and determining parame-
ters for designs during planning. Second is an abstract set
of protocol components that are specific to synthetic biol-
ogy, but not to particular lab configurations. Finally, there
are methods that are specific to particular labs, and that en-
able our procedures to be translated into executable form.
For example, some of these library components enable an
XPlan-generated experimental protocol to be translated to
Autoprotocol. Autoprotocol, developed by Transcriptic2, is
an executable JSON schema providing a domain specific
language for automated wet lab operation.

Consider an experiment for measuring growth rate of a set
of modified yeast strains over time via optical density (OD),
which characterizes the amount of cells interfering with light
shining through a sample. Experiment plans must first select
the combination of biological factors that will be most in-
formative. Examples for yeast strains include the modified
genes, the yeast strain itself, small molecule concentrations,
and other environmental factors (media type, temperature,
humidity, etc.). These factors affect growth rate, which can
be estimated across time by monitoring changing OD.

Listing 1 shows a Shop2 planning operator for the pro-
cess of “provisioning” a replicate, i.e., collecting a sam-
ple from a particular strain of micro-organism (identified by
?resource) in order to use it as a replicate in an experi-
ment. A “replicate” is one of multiple copies of the same
strain/conditions pair, used to ensure results are not lost due
to mistake, and to provide sufficient data for later analysis.
Intuitively, “provisioning” like selecting a cup of an ingredi-
ent for use in a recipe. The resource argument will be bound
to a URI pointing to a SynBioHub entry representing a strain
of yeast.

Listing 1: Example Shop2 sample provisioning operator definition.
(:op (!provision-replicate ?sid

?resource ?colony-type)
:precond
((experiment-id ?ex-id)
(assign ?sample-uri
(make-sample-uri ?ex-id ?sid)))

:add
((experiment-sample ?sid ?sample-uri)
(derived-from ?sid ?resource)
(resource ?colony-type ?sid)
(sample-map
(:source ?resource
:destination ?sample-uri)))

:cost 0.0)

This operator description highlights one of the expressive
features of Shop2’s HTNs not present in traditional planners:
its ability tomake external function calls during planning and
incorporate the return values of those calls into its plan and

Shop2 task networks.
2https://www.transcriptic.com/

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

50

state. In the above example, the operator will call the function
make-sample-uri, passing the values of two variables (the
experiment id and the sample id) from the plan space as
arguments and receive a newly-generatedURI for the sample.
Unlike classical or other HTN planners, the ability to make
external function calls makes Shop2 Turing-complete3 and
highly applicable to practical planning domains.

We also useShop2’s facilities for computing action costs to
compute experiment costs. Shop2 allows an author to specify
either static or dynamic cost functions in operator descrip-
tions. The former is a fixed number across all instantiations of
the operator description (e.g., the operator in Listing 1 has a
static zero cost). The latter defines cost value as a function of
the parameters from preconditions and task arguments. List-
ing 2 shows an operator whose cost is computed by looking
up lab-specific costs for a growth method (?meth) and the
lab’s minimum sample size. This cost summary is then accu-
mulated to compute the cost of a plan—in this case, the cost
of an experiment. We define the cost of an experiment based
on propriety information gathered from specific laboratories.
This information includes both monetary and human costs.

Listing 2: Example Shop2 cost computation.
(:op (!!calc-culture-cost ?performer ?meth)

:precond
((cost ?meth

?performer ?cost-per-sample)
(min-sample ?meth ?performer

?number-of-samples))
:cost (* ?cost-per-sample

?number-of-samples))

Listing 3 shows an example Shop2 method for provision-
ing yeast colonies into samples to be used in an experi-
ment. This is a recursive HTN method in Shop2’s language;
it enables the planner to iterate over the yeast colony ?re-
sources given in the first argument to the head task and
provision a replicate sample for each of those resources.
Unlike traditional planning model languages, Shop2 allows
sets as possible values for variables in a method or opera-
tor. For example in Listing 3, the variables ?resources and
?provisioned-samples hold lists of yeast colony descriptions.

Listing 3: Example Shop2 method for sample provisioning.
(:method
;; Head task:
(provision-all-resources ?resources

?provisioned-samples)

;; preconditions for recursion base case:
((= ?resources nil)
(bagof ?map (provision-sample-map ?map)

?sample-map))
;; subtasks(s) for the base case:
(!provision :name ?name
:transformations ?sample-map)

;; Recursive step
;; preconditions
((= ?resources (?resource . ?rest)))

3See Appendix A.

;; subtasks
((provision-replicates ?resource

?type ?replicates)
(provision ?rest ?provisioned-samples)))

The first precondition specifies the base case: checking to
see if all of the resources have been provisioned, i.e., if the
?resources list is empty. If so, the planner collects the
entries of the provision sample map. Shop2’s preconditions
language includes Prolog’s bagof, which finds all bindings
to a variable in a logical formula and collects them. Listing 3
collects the values of the ?map variable from every grounded
provision-sample-map ?map logical expression in the
current state. Next Shop2 will invoke the !provision oper-
ator with information from the sample map. In the recursive
branch, the preconditions specify that the resources list must
not be empty and split it into a first resource and the rest of the
resources. The subtasks when this match are to provision the
replicates for the first resource, and then recursively handle
the remaining resources.

4 Value of Information
Providing predictable cost information was one of our spon-
sor’s highest initial priorities: they are very concerned with
facilitating scientific discovery by making labs-for-hire eas-
ier, more transparent, and more cost-effective to use. As we
described above, XPlan can already provide estimated costs
for performing protocols at multiple labs. To go beyond this
and provide further support to users, we are adding tech-
niques, based on value of information (VOI), to estimate the
benefit of particular protocols, so that XPlan (likely in col-
laboration with its user) can guide users to more informative
experimental protocols. We also hope that the analysis we
conduct in the process will shed light on questions such as
“how many biological and technical replicates are appropri-
ate?”, “how important is it to test this design across multiple
laboratories?”, and “how many tests are necessary to build
confidence that a design is reliably replicable?”

In conventional decision analysis, VOI is defined as the
difference between the expected utility of a decision made
with a particular piece of information, and without that infor-
mation (Pearl 1988, Chapter 6)). In design problems proper,
we can use the estimated value of a successful design to
compute the value of information that contributes to the de-
sign. For cases where the design is not directly useful (today
many designs are made for exploratory reasons, not for em-
ployment), we will take the information produced (in terms
of information distance between prior and posterior) as a
proxy for utility. Unfortunately, VOI is notoriously difficult
to compute (Krause and Guestrin 2009), because it requires
reasoning about multiple possible outcomes of experiments.

Our work on this part of XPlan is at a very early stage, but
we can characterize the direction we are taking. We expect
to use Monte Carlo Tree Search (MCTS) to approximate
the value of information (Kamar and Horvitz (2013) use
this technique but in a much simpler problem). Since the
information-gathering process will be driven by execution of
experimental processes, we will use Shop2 to build the trees
for the MCTS. We are still working out the extent to which

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

51

the problem will involve conditional planning – typically
there is little closed-loop control of the experimental proto-
col based on the information produced. That information is
generally extracted in an offline data analysis process after
the protocol is completed. Closed-loop control is typically
limited to correcting failures. If true, that will simplify the
construction of the protocol significantly, and avoid the need
to generate a large and complex experimental policy instead
of an experimental plan. That said, XPlan will still have to
explore many branches to find the VOI of alternative plans.

5 Conclusions and Future Work
Our XPlan system uses HTN planning in an interesting new
domain: experiment planning for synthetic biology. XPlan
exploits the expressive power of the Shop2 planner to handle
many of the challenges in coupled engineering design and
scientific exploration of emerging fields. It adapts to domains
with weak mechanical models, in a way that would be dif-
ficult, if not impossible for first principles planners. It has
already shown utility by computing experiment costs across
different labs, and by automating the process of aligning ex-
perimental data with experimenter intent in ways that enable
the automation (and hence the speed-up) of data analysis.
The fact that XPlan’s plans can be compiled into executable
procedures will provide value in the near future, as the SD2
pipeline is completed. In ongoing work, we are extending
our cost modeling to incorporate benefits – in terms of VOI.

A Shop2 is Turing-complete
Since Shop2 can invoke arbitrary functions in its precon-
ditions (Nau et al. 2003), it can invoke a Turing machine
simulator as an external function, and have a task network
that would take a universal Turning machine program as pa-
rameter and return a plan iff that program terminates. �

References
Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A Sound and
Complete Procedure for Hierarchical Task-Network Planning. In
Proc. Second International Conf. on AI Planning Systems (AIPS-
94), 249–254.
Goldman, R. P., and Kuter, U. 2018. Explicit stack search in shop2.
Technical Report SIFT-TR-2018-1, SIFT, LLC, Minneapolis, MN.
Goldman, R. P. 2009. A semantics for HTN methods. In Gerevini,
A.; Howe, A. E.; Cesta, A.; and Refanidis, I., eds., ICAPS. AAAI.
Kamar, E., and Horvitz, E. 2013. Light at the end of the tunnel:
A Monte Carlo approach to computing value of information. In
Gini, M. L.; Shehory, O.; Ito, T.; and Jonker, C. M., eds., AAMAS,
571–578. IFAAMAS.
Krause, A., and Guestrin, C. 2009. Optimal Value of Information
in Graphical Models. Journal of Artificial Intelligence Research
35:557–591.
Madsen, C.; McLaughlin, J. A.; Mısırlı, G.; Pocock, M.; Flanagan,
K.; Hallinan, J.; and Wipat, A. 2016. The SBOL Stack: A Platform
for Storing, Publishing, and Sharing Synthetic Biology Designs.
ACS Synthetic Biology 5(6):487–497.
McLaughlin, J. A.; Myers, C. J.; Zundel, Z.; Mısırlı, G.; Zhang, M.;
Ofiteru, I.D.;Goñi-Moreno,A.; andWipat,A. 2018. SynBioHub:A
Standards-Enabled Design Repository for Synthetic Biology. ACS
Synthetic Biology 7(2):682–688.

Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, W.; Wu, D.;
and Yaman, F. 2003. SHOP2: An HTN planning system. JAIR
20:379–404.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Muñoz-Avila, H.; Mur-
dock, J. W.; Wu, D.; and Yaman, F. 2005. Applications of SHOP
and SHOP2. IEEE Intelligent Systems 20(2):34—41.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Waltham, MA: Morgan Kaufmann.
Roehner, N.; Beal, J.; Clancy, K.; Bartley, B.; Misirli, G.; Grünberg,
R.; Oberortner, E.; Pocock, M.; Bissell, M.; Madsen, C.; Nguyen,
T.; Zhang, M.; Zhang, Z.; Zundel, Z.; Densmore, D.; Gennari, J. H.;
Wipat, A.; Sauro, H. M.; and Myers, C. J. 2016. Sharing Structure
and Function in Biological Design with SBOL 2.0. ACS Synthetic
Biology 5(6):498–506.
Wilkins, D. E. 1988. Practical Planning: Extending the Classical
AI Planning Paradigm. Morgan Kaufmann Publishers.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

52

